Resolving kinematic redundancy with constraints using the FSP (Full Space Parameterization) approach

PDF Version Also Available for Download.

Description

A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the unconstrained system. At each time step, a constrained optimization technique is then used to analytically find the specific joint motion solution that satisfies the desired task objective and all the constraints active during the time step. The method is applicable to systems ... continued below

Physical Description

8 p.

Creation Information

Pin, F.G. & Tulloch, F.A. February 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the unconstrained system. At each time step, a constrained optimization technique is then used to analytically find the specific joint motion solution that satisfies the desired task objective and all the constraints active during the time step. The method is applicable to systems operating in a priori known environments or in unknown environments with sensor-based obstacle detection. The derivation of the analytical solution is first presented for a general type of kinematic constraint and is then applied to the problem of motion planning for redundant manipulators with joint limits and obstacle avoidance. Sample results using planar and 3-D manipulators with various degrees of redundancy are presented to illustrate the efficiency and wide applicability of constrained motion planning using the FSP approach.

Physical Description

8 p.

Notes

INIS; OSTI as DE96005392

Source

  • IEEE international conference on robotics and automation, Minneapolis, MN (United States), 22-28 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96005392
  • Report No.: CONF-960448--7
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 201782
  • Archival Resource Key: ark:/67531/metadc672714

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 23, 2016, 10:35 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pin, F.G. & Tulloch, F.A. Resolving kinematic redundancy with constraints using the FSP (Full Space Parameterization) approach, article, February 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc672714/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.