Westinghouse multi-annular swirl burner CRADA 95-029. Final report

PDF Version Also Available for Download.

Description

The FLUENT computational fluid dynamic code has been used to aid design of the Westinghouse Multi-Annular Swirl Burner (MASB). After successful comparison of FLUENT predictions to test data, design studies using FLUENT have indicated that backwall holes are unnecessary in the MASB design. FLUENT was then used to study the adaptation of the MASB design to the Power Systems Development Facility (PSDF). Preliminary steady-state and transient simulations of the propane-fueled start-up process indicate that flame structure is dependent on the choice turbulence closure and the resultant variation in swirl levels and recirculation zones. Due to the effect of duct geometry ... continued below

Physical Description

42 p.

Creation Information

Creator: Unknown. June 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The FLUENT computational fluid dynamic code has been used to aid design of the Westinghouse Multi-Annular Swirl Burner (MASB). After successful comparison of FLUENT predictions to test data, design studies using FLUENT have indicated that backwall holes are unnecessary in the MASB design. FLUENT was then used to study the adaptation of the MASB design to the Power Systems Development Facility (PSDF). Preliminary steady-state and transient simulations of the propane-fueled start-up process indicate that flame structure is dependent on the choice turbulence closure and the resultant variation in swirl levels and recirculation zones. Due to the effect of duct geometry on swirl dissipation, a more accurate representation of the transition duct connecting the MASB to the turbine will be needed to better describe the flame structure.

Physical Description

42 p.

Notes

OSTI as DE96010269

Source

  • Other Information: PBD: Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96010269
  • Report No.: DOE/METC--96/1031
  • DOI: 10.2172/236263 | External Link
  • Office of Scientific & Technical Information Report Number: 236263
  • Archival Resource Key: ark:/67531/metadc672583

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 30, 2015, 1:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Westinghouse multi-annular swirl burner CRADA 95-029. Final report, report, June 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc672583/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.