The physics of coal liquid slurry atomization. Final report to Department of Energy - PETC

PDF Version Also Available for Download.

Description

The stability of turbulent columns of liquid injected into a quiescent environment was studied. Laser Doppler Anemometry measurements of the flow patterns and turbulence characteristics in free liquid jets were made. Turbulence decay along Newtonian jets was investigated along with the effects of turbulence on the resulting droplet size distributions after breakup. The rate of decay of turbulence properties along the jet were investigated. Disintegration of liquid jets injected into a high-velocity gas stream has also been studied. Newtonian and non-Newtonian liquids were studied with particular emphasis on the non-Newtonian rheological characteristics. Determination was made of the extent that the ... continued below

Physical Description

14 p.

Creation Information

Chigier, N. & Mansour, A. October 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The stability of turbulent columns of liquid injected into a quiescent environment was studied. Laser Doppler Anemometry measurements of the flow patterns and turbulence characteristics in free liquid jets were made. Turbulence decay along Newtonian jets was investigated along with the effects of turbulence on the resulting droplet size distributions after breakup. The rate of decay of turbulence properties along the jet were investigated. Disintegration of liquid jets injected into a high-velocity gas stream has also been studied. Newtonian and non-Newtonian liquids were studied with particular emphasis on the non-Newtonian rheological characteristics. Determination was made of the extent that the addition of high molecular weight polymer to liquids change the breakup process. Shear thinning, extension thinning and extension thickening fluids were investigated. Shear viscosities were measured over five decades of shear rates. The contraction flow technique was also used for measurement of the extensional viscosity of non-Newtonian liquids. The die-swell technique was also used to determine the first normal stress difference. The near field produced by a co-axial airblast atomizer was investigated using the phase Doppler particle analyzer. Whether or not the classical wave mechanism and empirical models reported for airblast atomization of low viscosity liquid are applicable to airblast atomization of viscous non-Newtonian liquids was determined. The theoretical basis of several models which give the best fit to the experimental data for airblast atomization of non-Newtonian liquids was also discussed. The accuracy of the wave mechanism-based models in predicting droplets sizes after breakup of viscous non-Newtonian liquids using an airblast atomizer has also been demonstrated.

Physical Description

14 p.

Notes

OSTI as DE96005560

Source

  • Other Information: PBD: 1 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96005560
  • Report No.: DOE/PC/92152--T17
  • Grant Number: FG22-92PC92152
  • DOI: 10.2172/196497 | External Link
  • Office of Scientific & Technical Information Report Number: 196497
  • Archival Resource Key: ark:/67531/metadc672504

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 24, 2015, 7:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chigier, N. & Mansour, A. The physics of coal liquid slurry atomization. Final report to Department of Energy - PETC, report, October 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc672504/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.