Particle contamination control in plasma processing: Building-in reliability for semiconductor fabrication

PDF Version Also Available for Download.

Description

Plasma processing is used for {approximately}35% of the process steps required for semiconductor manufacturing. Recent studies have shown that plasma processes create the greatest amount of contaminant dust of all the manufacturing steps required for device fabrication. Often, the level of dust in a plasma process tool exceeds the cleanroom by several orders of magnitude. Particulate contamination generated in a plasma tool can result in reliability problems as well as device failure. Inter-level wiring shorts different levels of metallization on a device is a common result of plasma particulate contamination. We have conducted a thorough study of the physics and ... continued below

Physical Description

9 p.

Creation Information

Selwyn, G.S. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plasma processing is used for {approximately}35% of the process steps required for semiconductor manufacturing. Recent studies have shown that plasma processes create the greatest amount of contaminant dust of all the manufacturing steps required for device fabrication. Often, the level of dust in a plasma process tool exceeds the cleanroom by several orders of magnitude. Particulate contamination generated in a plasma tool can result in reliability problems as well as device failure. Inter-level wiring shorts different levels of metallization on a device is a common result of plasma particulate contamination. We have conducted a thorough study of the physics and chemistry involved in particulate formation and transport in plasma tools. In-situ laser light scattering (LLS) is used for real-time detection of the contaminant dust. The results of this work are highly surprising: all plasmas create dust; the dust can be formed by homogeneous as well as heterogeneous chemistry; this dust is charged and suspended in the plasma; additionally, it is transported to favored regions of the plasma, such as those regions immediately above wafers. Fortunately, this work has also led to a novel means of controlling and eliminating these unwanted contaminants: electrostatic {open_quotes}drainpipes{close_quotes} engineered into the electrode by means of specially designed grooves. These channel the suspended particles out of the plasma and into the pump port before they can fall onto the wafer.

Physical Description

9 p.

Notes

OSTI as DE96008700

Source

  • International integrated reliability workshop, Fallenleaf, CA (United States), 22-25 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008700
  • Report No.: LA-UR--96-570
  • Report No.: CONF-9510357--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 224247
  • Archival Resource Key: ark:/67531/metadc672485

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 25, 2016, 10:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Selwyn, G.S. Particle contamination control in plasma processing: Building-in reliability for semiconductor fabrication, article, December 31, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc672485/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.