Debris-free laser plasma sources for EUVL based on gas jets

PDF Version Also Available for Download.

Description

EUV sources for EUVL must not only be bright for throughput, they must also be debris-free to increase condenser longevity. Many schemes to achieve bright, clean sources for EUVL have been studied, including mass-limited targets, cryogenic targets, electric discharges, and electron-beam pumped vapor. Several of these sources show promise, with varying degrees of brightness, debris reduction, and system complexity. We have studied pulsed gas jets, which we find to be relatively simple, debris-free sources when used under appropriate conditions. Under transverse, 1.06 {mu}m irradiation of the jet at incident laser intensities in the range of 10{sup 11}-10{sup 12} Watts/cm{sup 2}, ... continued below

Physical Description

4 p.

Creation Information

Kubiak, G.D.; O`Connell, D. & Krenz, K.D. March 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Livermore, CA (United States)
    Place of Publication: Livermore, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

EUV sources for EUVL must not only be bright for throughput, they must also be debris-free to increase condenser longevity. Many schemes to achieve bright, clean sources for EUVL have been studied, including mass-limited targets, cryogenic targets, electric discharges, and electron-beam pumped vapor. Several of these sources show promise, with varying degrees of brightness, debris reduction, and system complexity. We have studied pulsed gas jets, which we find to be relatively simple, debris-free sources when used under appropriate conditions. Under transverse, 1.06 {mu}m irradiation of the jet at incident laser intensities in the range of 10{sup 11}-10{sup 12} Watts/cm{sup 2}, the conversion efficiency into 2{pi} steradians is in the range of 0.3-0.4%, or approximately half the value exhibited by solid Au or W targets under similar conditions. Source sizes in the range of 350 {mu}m x 400 {mu}m can be achieved, as shown in Fig. 2, depending sensitively on both laser and gas jet parameters. One issue that must be overcome in the use of gas jet targets is the requirement that the laser-irradiated plasma be located as far from the jet nozzle as possible to avoid debris generation while maintaining adequate EUV conversion. We will describe conditions under which these criteria are met. Measurements of the reflectance lifetimes of multilayer-coated mirrors placed near the plasma source under these conditions will also be presented. The potential for scaling such sources up to meet the requirements of a commercial EUVL system will be discussed.

Physical Description

4 p.

Notes

OSTI as DE96006813

Source

  • Optical Society of America (OSA) topical meeting on extreme ultraviolet lithography, Boston, MA (United States), 1-3 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96006813
  • Report No.: SAND--96-8482C
  • Report No.: CONF-960590--2
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 224442
  • Archival Resource Key: ark:/67531/metadc672353

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 12, 2016, 8:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kubiak, G.D.; O`Connell, D. & Krenz, K.D. Debris-free laser plasma sources for EUVL based on gas jets, article, March 1, 1996; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc672353/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.