Determination of interionic potentials in molecules

PDF Version Also Available for Download.

Description

The rationale underlying materials by design is that properties are determined by structure so that if the relationships between structure and properties are understood, an appropriate material can be designed and fabricated to meet any set of criteria. Since ion-ion potentials determine state transformations and reactivity, they are essential to the entire concept of materials and molecules by design. Virtually all of the important state-to-state processes undergone by molecules (excitation, relaxation, ionization, dissociation, and combination) and the selection among these different pathways are determined by the ion-ion potentials and the resulting degree of overlap between molecular vibrational states for different ... continued below

Physical Description

6 p.

Creation Information

Conradson, S.D.; Leon, J.M. & Bridges, F. April 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The rationale underlying materials by design is that properties are determined by structure so that if the relationships between structure and properties are understood, an appropriate material can be designed and fabricated to meet any set of criteria. Since ion-ion potentials determine state transformations and reactivity, they are essential to the entire concept of materials and molecules by design. Virtually all of the important state-to-state processes undergone by molecules (excitation, relaxation, ionization, dissociation, and combination) and the selection among these different pathways are determined by the ion-ion potentials and the resulting degree of overlap between molecular vibrational states for different electronic and atomic configurations. Although the depths of these potentials can be obtained from thermodynamic data and the separations between the vibronic states from spectroscopic measurements, the use of these potentials in the ab initio calculation of state-transformation outcomes is limited by the absence of any direct method for determining their extent and shape. The authors have recently developed a generalization of x-ray absorption fine structure (XAFS) and a related set of experimental and analysis procedures that, in principle, will allow them to obtain such potentials from XAFS data. They have undertaken the analysis of temperature-dependent XAFS data of Cu, Ag, and Au to test the accuracy of existing analytical forms (the Morse potential for metals) in predicting the details of pair distributions and to determine the range of validity of a temperature-independent effective pair-potential approximation. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

Physical Description

6 p.

Notes

OSTI as DE96008771

Source

  • Other Information: PBD: [1996]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008771
  • Report No.: LA-UR--96-0243
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/212552 | External Link
  • Office of Scientific & Technical Information Report Number: 212552
  • Archival Resource Key: ark:/67531/metadc672345

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 29, 2016, 8:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Conradson, S.D.; Leon, J.M. & Bridges, F. Determination of interionic potentials in molecules, report, April 1, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc672345/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.