Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

PDF Version Also Available for Download.

Description

Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to {similar_to}7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of {similar_to}0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe{sup 2+} ions at RT produced amorphization in the implanted ion region after damage levels of {similar_to}1 dpa. However, irradiated regions outside the implanted ion region did ... continued below

Physical Description

24 p.

Creation Information

Zinkle, S.J. & Snead, L.L. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to {similar_to}7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of {similar_to}0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe{sup 2+} ions at RT produced amorphization in the implanted ion region after damage levels of {similar_to}1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He{sup +} ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC.

Physical Description

24 p.

Notes

INIS; OSTI as DE96008694

Source

  • 8. international conference on radiation effects in insulators, Catania (Italy), 11-15 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008694
  • Report No.: CONF-950922--1
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 217727
  • Archival Resource Key: ark:/67531/metadc672334

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 22, 2016, 11:40 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zinkle, S.J. & Snead, L.L. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc672334/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.