Secondary phase formation and the microstructural evolution of surface layers during vapor phase alteration of the French SON 68 nuclear waste glass at 200{degrees}C

PDF Version Also Available for Download.

Description

The SON 68 inactive {open_quotes}R7T7{close_quotes} composition is the French reference glass for the LWR nuclear waste glass. Vapor phase alteration was used to accelerate the reaction progress of glass corrosion and to develop the characteristic suite of secondary, alteration phases. Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six inactive R7T7 waste glasses which were altered in the presence of saturated water vapor (200{degrees}C) for 91, 241, 908, 1000, 1013, and 1021 days. The AEM samples were examined in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered with a thin altered rind. The layer ... continued below

Physical Description

9 p.

Creation Information

Gong, W.L.; Ewing, R.C. & Wang, L.M. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 27 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The SON 68 inactive {open_quotes}R7T7{close_quotes} composition is the French reference glass for the LWR nuclear waste glass. Vapor phase alteration was used to accelerate the reaction progress of glass corrosion and to develop the characteristic suite of secondary, alteration phases. Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six inactive R7T7 waste glasses which were altered in the presence of saturated water vapor (200{degrees}C) for 91, 241, 908, 1000, 1013, and 1021 days. The AEM samples were examined in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered with a thin altered rind. The layer became thicker with time: 0.5 {mu}m for 22 days; 4 {mu}m for 91 days; 6 {mu}m for 241 days; 10 {mu}m for 908 days; 26 {mu}m for 1013 days; and <35 {mu}m for 1021 days. The composite alteration layer of the SON 68 samples is at least four time less thick than that of the SRL 131 glass composition. Six distinctive zones, based on phase chemistry and microstructure, were distinguished within the well-developed surface layers. Numerous crystalline phases such as analcime, tobermorite, apatite, and weeksite were identified on the surfaces of the reacted glasses as precipitates. Two crystalline phases, Ag{sub 2}TeO{sub 3} and (Ca,Sr)Mo{sub 3}O{sub 9}(OH){sub 2}, were found within the inner zones of surface layers, and they must have nucleated in situ, indicating that Ag, Te, Sr, and Mo can be retained within the surface layer. The majority of the surface layer volume is composed of two morphologically and chemically different structures: one consists of well-crystallized fibrous smectite aggregates occurring along with cavities, the A-domain; and the other consists of poorly-crystallized regions containing needle-like smectite (montmorillonite) crystallites, a silica-rich amorphous matrix, and possibly ZrO{sub 2} particles, the B-domain.

Physical Description

9 p.

Notes

INIS; OSTI as DE96007210

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 27 Nov - 1 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96007210
  • Report No.: ANL/CMT/CP--88983
  • Report No.: CONF-951155--81
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 204217
  • Archival Resource Key: ark:/67531/metadc672210

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 27, 2016, 1:15 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 27

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gong, W.L.; Ewing, R.C. & Wang, L.M. Secondary phase formation and the microstructural evolution of surface layers during vapor phase alteration of the French SON 68 nuclear waste glass at 200{degrees}C, article, December 31, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc672210/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.