Optimizing robot placement for visit-point tasks

PDF Version Also Available for Download.

Description

We present a manipulator placement algorithm for minimizing the length of the manipulator motion performing a visit-point task such as spot welding. Given a set of points for the tool of a manipulator to visit, our algorithm finds the shortest robot motion required to visit the points from each possible base configuration. The base configurations resulting in the shortest motion is selected as the optimal robot placement. The shortest robot motion required for visiting multiple points from a given base configuration is computed using a variant of the traveling salesman algorithm in the robot joint space and a point-to-point path ... continued below

Physical Description

6 p.

Creation Information

Hwang, Y.K. & Watterberg, P.A. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a manipulator placement algorithm for minimizing the length of the manipulator motion performing a visit-point task such as spot welding. Given a set of points for the tool of a manipulator to visit, our algorithm finds the shortest robot motion required to visit the points from each possible base configuration. The base configurations resulting in the shortest motion is selected as the optimal robot placement. The shortest robot motion required for visiting multiple points from a given base configuration is computed using a variant of the traveling salesman algorithm in the robot joint space and a point-to-point path planner that plans collision free robot paths between two configurations. Our robot placement algorithm is expected to reduce the robot cycle time during visit- point tasks, as well as speeding up the robot set-up process when building a manufacturing line.

Physical Description

6 p.

Notes

OSTI as DE96011853

Source

  • Artificial intelligence and manufacturing: a research planning workshop, Albuquerque, NM (United States), 24-26 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011853
  • Report No.: SAND--96-1239C
  • Report No.: CONF-9606211--3
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 243446
  • Archival Resource Key: ark:/67531/metadc672157

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 9:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hwang, Y.K. & Watterberg, P.A. Optimizing robot placement for visit-point tasks, article, June 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc672157/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.