Finite element studies of the influence of pile-up on the analysis of nanoindentation data

PDF Version Also Available for Download.

Description

Methods currently used for analyzing nanoindentation load-displacement data give good predictions of the contact area in the case of hard materials, but can underestimate the contact area by as much as 40% for soft materials which do not work harden. This underestimation results from the pile-up which forms around the hardness impression and leads to potentially significant errors in the measurement of hardness and elastic modulus. Finite element simulations of conical indentation for a wide range of elastic-plastic materials are presented which define the conditions under which pile-up is significant and determine the magnitude of the errors in hardness and ... continued below

Physical Description

6 p.

Creation Information

Bolshakov, A.; Pharr, G.M. & Oliver, W.C. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Methods currently used for analyzing nanoindentation load-displacement data give good predictions of the contact area in the case of hard materials, but can underestimate the contact area by as much as 40% for soft materials which do not work harden. This underestimation results from the pile-up which forms around the hardness impression and leads to potentially significant errors in the measurement of hardness and elastic modulus. Finite element simulations of conical indentation for a wide range of elastic-plastic materials are presented which define the conditions under which pile-up is significant and determine the magnitude of the errors in hardness and modulus which may occur if pile-up is ignored. It is shown that the materials in which pile-up is not an important factor can be experimentally identified from the ratio of the final depth after unloading to the depth of the indentation at peak load, a parameter which also correlates with the hardness-to-modulus ratio.

Physical Description

6 p.

Notes

OSTI as DE96009403

Source

  • Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 8-12 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009403
  • Report No.: CONF-960401--17
  • Grant Number: AC05-96OR22464;AC05-76OR00033
  • Office of Scientific & Technical Information Report Number: 230353
  • Archival Resource Key: ark:/67531/metadc672057

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • May 2, 2016, 3:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bolshakov, A.; Pharr, G.M. & Oliver, W.C. Finite element studies of the influence of pile-up on the analysis of nanoindentation data, article, May 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc672057/: accessed October 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.