Metal oxide coatings for piezoelectric exhaust gas sensors

PDF Version Also Available for Download.

Description

We have deposited ZrO{sub 2}, TiO{sub 2}, and SnO{sub 2} films on ST-cut quartz surface acoustic wave (SAW) devices via sol-gel techniques. The films range from 100 to 300 nm thick and have porosities after calcination at 300{degrees}C that range from 82-88 % for ZrO{sub 2}, 77-81% for TiO{sub 2}, and 57-66% for SnO{sub 2}. In all cases, we have varied the synthesis and processing parameters over a wide range to optimize film properties: metal ion concentration (0.05-1.0 M), the H{sub 2}O:metal ratio (0.3-5.3), the acid concentration in the sol (0.02-0.7 M), the modifier ligand:metal ratio (r = 0.0-1.0), the ... continued below

Physical Description

6 p.

Creation Information

Anderson, M.T. & Cernosek, R.W. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have deposited ZrO{sub 2}, TiO{sub 2}, and SnO{sub 2} films on ST-cut quartz surface acoustic wave (SAW) devices via sol-gel techniques. The films range from 100 to 300 nm thick and have porosities after calcination at 300{degrees}C that range from 82-88 % for ZrO{sub 2}, 77-81% for TiO{sub 2}, and 57-66% for SnO{sub 2}. In all cases, we have varied the synthesis and processing parameters over a wide range to optimize film properties: metal ion concentration (0.05-1.0 M), the H{sub 2}O:metal ratio (0.3-5.3), the acid concentration in the sol (0.02-0.7 M), the modifier ligand:metal ratio (r = 0.0-1.0), the processing conditions (100-900{degrees}C). The modifier ligand, triethanolamine (TEA), is added to each solution to allow multilayer films to be made crack free. The multilayer films are studied by optical microscopy, ellipsometry, X-ray diffraction, and N{sub 2} sorption. Preliminary high temperature frequency response measurements to target gases, such as, H{sub 2}, NO, NO{sub 2}, and propylene indicate limited sensitivity for the configurations tested.

Physical Description

6 p.

Notes

OSTI as DE96010551

Source

  • 3. international high temperature electronics conference, Albuquerque, NM (United States), 9-14 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96010551
  • Report No.: SAND--96-1178C
  • Report No.: CONF-9606159--3
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 244467
  • Archival Resource Key: ark:/67531/metadc671944

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 13, 2016, 2:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anderson, M.T. & Cernosek, R.W. Metal oxide coatings for piezoelectric exhaust gas sensors, article, June 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc671944/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.