Modeling the Ferrite-to-Austenite Transformation in the Heat-Affected Zone of Stainless Steel Multi-pass Welds

J. M. Vitek, S. A. Vitek, and S. A. David
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6376
U. S. A.

4th International Conference on Trends in Welding Research
Gatlinburg, Tennessee, June 5-8, 1995

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Abstract

The ferrite/austenite transformation in austenitic stainless steel welds was modeled by considering the transformation as a diffusion-controlled process. A finite-difference method was used to solve the diffusion equations. The transformation behavior was evaluated for both isothermal aging and linear cooling over a range of cooling rates. The analysis provides information on the change in ferrite content as a function of heat treatment as well as the rate of the formation (or dissolution) of ferrite. The compositions of the ferrite and austenite are also obtained in the analysis. The results show that the approach to equilibrium can often be indirect and sometimes counter to intuition. The analysis is useful in providing information on the microstructural stability in austenitic stainless steel welds that cannot be obtained experimentally.

KNOWLEDGE OF THE MATERIAL MICROSTRUCTURE is critical in order to understand and project how a material will respond to further processing and to service conditions. The microstructure controls the properties such as strength, corrosion resistance, toughness, ductility, and weldability. In addition, a thorough understanding of the microstructure is important in evaluating the alloy stability when exposed to elevated temperatures during service. This is particularly important in welding where the heat-affected zone (HAZ) may be subjected to temperatures up to the solidus temperature. Finally, in the case of welds, the microstructure in the HAZ may be very important because this region acts as the "mold" for solidification of the weld. Due to the epitaxial nature of solidification during welding, the microstructure of the HAZ at the time of solidification may have a significant influence on the solidification process and the final weld microstructure.

There are several means by which the microstructure can be assessed. Direct observation is the most straightforward approach, but it is limited by the extent to which the microstructures and phases present in the HAZ at elevated temperatures can be preserved at the observation temperature. Equilibrium phase diagrams can also provide much guidance in evaluating the microstructure. In the case of weldments, constitution diagrams such as the Schaeffler diagram (1) and recent revisions (2) provide additional information on the weld microstructure. However, these diagrams also have limitations. Equilibrium diagrams are of limited value because equilibrium is often not achieved under normal welding conditions. Constitution diagrams cover a wide range of alloy compositions by invoking nickel and chromium equivalents. As such, they are a very valuable first approximation, but they may be of limited accuracy for specific alloys since they represent average behavior. In addition, constitution diagrams do not consider all variables that may have an influence on the microstructure, such as cooling rate, and therefore their predictions may not be accurate under certain conditions (3).

For welding conditions, the material in the HAZ is subjected to very high temperatures. At these temperatures, experimental evaluation of the phase stability and transformation behavior is extremely difficult, if not impossible. In addition, experimental studies are alloy specific and therefore cannot be automatically expanded to other alloy compositions. Because of these limitations, modeling of the microstructural development is advantageous and desirable. Modeling can be readily applied to different compositions, and can provide critical information on the high-temperature phase stability that cannot be easily obtained otherwise. Modeling can also provide a wide variety of information, such as phase compositions, kinetics of the transformation, the influence of changing temperature cycles, and so on.

For austenitic stainless steel welds, the microstructure typically consists of two phases: an austenitic matrix phase (γ) with residual ferrite (α). Figure 1 shows a typical fusion zone (FZ) microstructure, with a ferrite content of approximately 10%. When exposed to elevated temperatures, either during subsequent welding passes or in service, the microstructure is not stable. Depending upon the exact thermal conditions, the ferrite may grow at high temperatures, or it may dissolve or transform at lower temperatures. Evidence of this phase instability is revealed in
Calculation Procedure

The model was based on the evaluation of the diffusion-controlled growth or dissolution of ferrite in an austenitic matrix. Nucleation of ferrite was not considered since the starting microstructure contained both phases. Figure 2(a) illustrates the geometry of the system that was modeled, and Figure 2(b) shows how this model system can be used to represent a standard volume element in the actual microstructure. Referring to Figure 2(a), a one-dimensional system of finite size L was considered, with a planar interface between the ferrite (size t) and austenite (size L-t). In weldments, the ferrite exists at the dendrite cores, and it would be more realistic to assume a cylindrical geometry for the ferrite. However, it has been shown (4) that there is basically no difference in the kinetics of the transformation for planar, cylindrical, or spherical geometries as long as the ferrite is centered at the core of the system, as is appropriate for the modeling of austenitic stainless steels.

For simplicity, the initial ferrite and austenite compositions were assumed to be constant (but different). Commercial stainless steel alloy compositions were modeled by considering an Fe-Cr-Ni ternary alloy. As will be shown, the use of ternary alloys leads to many interesting results that are typical of multicomponent systems in general, and these effects would not be observed if only a binary system was considered. This is because in binary systems, there is one tie-line in a two-phase field at each temperature. However, in ternary and higher order systems, the added degree of freedom allows for a range of tie-lines between ferrite and austenite at one temperature, and this added flexibility permits for many new types of behavior.

The analysis involved the solution of Fick's Second Law, given as:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}. \quad (1)$$

where C represents the composition, t is the time, D is the diffusion coefficient, and x is the distance. At the interface between the ferrite and austenite phases, a mass balance is specified. This mass balance requires that the rate of growth of the ferrite is balanced by the net flux of chromium or nickel at the interface. Mathematically, this mass balance is given by:

$$-D_{\alpha} \frac{\partial C_{\alpha}}{\partial x} + D_{\gamma} \frac{\partial C_{\gamma}}{\partial x} = \frac{\partial x}{\partial t} \left(C_{\alpha} - C_{\gamma} \right) \quad (2)$$

The subscripts α and γ refer to the ferrite and austenite phases, respectively, and the concentration derivatives in the above
Results and Discussion

The finite-difference routine calculates the composition of ferrite and austenite as a function of distance and time. The location of the ferrite interface is also determined so that the ferrite growth (or dissolution) can be readily followed as a function of time as well. Figure 3 shows a plot of the composition profiles as a function of distance for selected isothermal aging times at 1000°C for the Fe-21.9Cr-10.35Ni alloy. The calculations show that the ferrite grows slightly while becoming slightly leaner in chromium and richer in nickel. Under these conditions the austenite composition changes only slightly. The ferrite size can be readily converted into a ferrite content. The change in ferrite content can be followed more easily by considering it as a function of aging time, as is done in Figure 4 for both alloys. The results for aging at 1000 and 1200°C are shown in Figures 4(a) and (b), respectively. Similarly, the average chromium and nickel compositions of ferrite and austenite as a function of aging time at theoretical electron microscopy (13-15). The size of the system, L, was fixed at 5 \(\mu m \) while the initial ferrite size was 0.5 \(\mu m \). As can be seen in Figure 2(b), these sizes are appropriate for a representative sample volume in the as-welded condition. The calculations were carried out for isothermal aging at 100°C intervals from 700 to 1300°C until final equilibrium was reached at each temperature. Representative results for 1000 and 1200°C aging will be presented here; results for other temperatures may be found elsewhere (7). Calculations were also made for non-isothermal conditions, in which the system was cooled at a constant rate (0.1, 1, 10, or 100°C/s).

The mathematical expressions for the diffusion equations in finite-difference form, the diffusion parameters, and the accuracy of the methodology are described in detail in another paper (7).

The present paper describes results for two alloy compositions that are representative of austenitic weld filler metal compositions (in wt%): Fe-21.9Cr-10.35Ni and Fe-21Cr-11.3Ni. The starting compositions of the ferrite and austenite were Fe-30Cr-4.5Ni and Fe-21Cr-11Ni, respectively, for the first alloy, and Fe-30Cr-5Ni and Fe-20Cr-12Ni, respectively, for the second alloy. These ferrite and austenite compositions are typical for these phases in the as-welded condition, as determined by analytical electron microscopy (13-15). The size of the system, L, was fixed at 5 \(\mu m \) while the initial ferrite size was 0.5 \(\mu m \). As can be seen in Figure 2(b), these sizes are appropriate for a representative sample volume in the as-welded condition. The calculations were carried out for isothermal aging at 100°C intervals from 700 to 1300°C until final equilibrium was reached at each temperature. Representative results for 1000 and 1200°C aging will be presented here; results for other temperatures may be found elsewhere (7). Calculations were also made for non-isothermal conditions, in which the system was cooled at a constant rate (0.1, 1, 10, or 100°C/s).

Results and Discussion

The finite-difference routine calculates the composition of ferrite and austenite as a function of distance and time. The location of the ferrite interface is also determined so that the ferrite growth (or dissolution) can be readily followed as a function of time as well. Figure 3 shows a plot of the composition profiles as a function of distance for selected isothermal aging times at 1000°C for the Fe-21.9Cr-10.35Ni alloy. The calculations show that the ferrite grows slightly while becoming slightly leaner in chromium and richer in nickel. Under these conditions the austenite composition changes only slightly. The ferrite size can be readily converted into a ferrite content. The change in ferrite content can be followed more easily by considering it as a function of aging time, as is done in Figure 4 for both alloys. The results for aging at 1000 and 1200°C are shown in Figures 4(a) and (b), respectively. Similarly, the average chromium and nickel compositions of ferrite and austenite as a function of aging time at analytical electron microscopy (13-15). The size of the system, L, was fixed at 5 \(\mu m \) while the initial ferrite size was 0.5 \(\mu m \). As can be seen in Figure 2(b), these sizes are appropriate for a representative sample volume in the as-welded condition. The calculations were carried out for isothermal aging at 100°C intervals from 700 to 1300°C until final equilibrium was reached at each temperature. Representative results for 1000 and 1200°C aging will be presented here; results for other temperatures may be found elsewhere (7). Calculations were also made for non-isothermal conditions, in which the system was cooled at a constant rate (0.1, 1, 10, or 100°C/s).

Results and Discussion

The finite-difference routine calculates the composition of ferrite and austenite as a function of distance and time. The location of the ferrite interface is also determined so that the ferrite growth (or dissolution) can be readily followed as a function of time as well. Figure 3 shows a plot of the composition profiles as a function of distance for selected isothermal aging times at 1000°C for the Fe-21.9Cr-10.35Ni alloy. The calculations show that the ferrite grows slightly while becoming slightly leaner in chromium and richer in nickel. Under these conditions the austenite composition changes only slightly. The ferrite size can be readily converted into a ferrite content. The change in ferrite content can be followed more easily by considering it as a function of aging time, as is done in Figure 4 for both alloys. The results for aging at 1000 and 1200°C are shown in Figures 4(a) and (b), respectively. Similarly, the average chromium and nickel compositions of ferrite and austenite as a function of aging time at analytical electron microscopy (13-15). The size of the system, L, was fixed at 5 \(\mu m \) while the initial ferrite size was 0.5 \(\mu m \). As can be seen in Figure 2(b), these sizes are appropriate for a representative sample volume in the as-welded condition. The calculations were carried out for isothermal aging at 100°C intervals from 700 to 1300°C until final equilibrium was reached at each temperature. Representative results for 1000 and 1200°C aging will be presented here; results for other temperatures may be found elsewhere (7). Calculations were also made for non-isothermal conditions, in which the system was cooled at a constant rate (0.1, 1, 10, or 100°C/s).

Results and Discussion

The finite-difference routine calculates the composition of ferrite and austenite as a function of distance and time. The location of the ferrite interface is also determined so that the ferrite growth (or dissolution) can be readily followed as a function of time as well. Figure 3 shows a plot of the composition profiles as a function of distance for selected isothermal aging times at 1000°C for the Fe-21.9Cr-10.35Ni alloy. The calculations show that the ferrite grows slightly while becoming slightly leaner in chromium and richer in nickel. Under these conditions the austenite composition changes only slightly. The ferrite size can be readily converted into a ferrite content. The change in ferrite content can be followed more easily by considering it as a function of aging time, as is done in Figure 4 for both alloys. The results for aging at 1000 and 1200°C are shown in Figures 4(a) and (b), respectively. Similarly, the average chromium and nickel compositions of ferrite and austenite as a function of aging time at analytical electron microscopy (13-15). The size of the system, L, was fixed at 5 \(\mu m \) while the initial ferrite size was 0.5 \(\mu m \). As can be seen in Figure 2(b), these sizes are appropriate for a representative sample volume in the as-welded condition. The calculations were carried out for isothermal aging at 100°C intervals from 700 to 1300°C until final equilibrium was reached at each temperature. Representative results for 1000 and 1200°C aging will be presented here; results for other temperatures may be found elsewhere (7). Calculations were also made for non-isothermal conditions, in which the system was cooled at a constant rate (0.1, 1, 10, or 100°C/s).

Results and Discussion

The finite-difference routine calculates the composition of ferrite and austenite as a function of distance and time. The location of the ferrite interface is also determined so that the ferrite growth (or dissolution) can be readily followed as a function of time as well. Figure 3 shows a plot of the composition profiles as a function of distance for selected isothermal aging times at 1000°C for the Fe-21.9Cr-10.35Ni alloy. The calculations show that the ferrite grows slightly while becoming slightly leaner in chromium and richer in nickel. Under these conditions the austenite composition changes only slightly. The ferrite size can be readily converted into a ferrite content. The change in ferrite content can be followed more easily by considering it as a function of aging time, as is done in Figure 4 for both alloys. The results for aging at 1000 and 1200°C are shown in Figures 4(a) and (b), respectively. Similarly, the average chromium and nickel compositions of ferrite and austenite as a function of aging time at
1000 and 1200°C are shown in Figures 5 and 6.

Several interesting features are found in Figures 4 through 6. First, for one alloy (Fe-21Cr-11.3Ni), aging at 1000°C results in the total dissolution of the ferrite, yielding a fully austenitic structure (see Figure 4(a)). For computational reasons, less than 0.2% ferrite was designated as "totally dissolved." Thus, the model predicts the aging time required for complete homogenization and elimination of any residual ferrite. At 1200°C, the ferrite remains stable in this alloy. For the other alloy, the ferrite remains a stable constituent at all temperatures. In fact, at 1200°C, both ferrite growth is observed. For the Fe-21.9Cr-10.35Ni alloy, the ferrite content increases to nearly 35%, and this growth is completed in less than 10,000 s. Even within 10 s, which is comparable to the exposure time of the HAZ during multipass welding, the ferrite content increases to more than 20%. At 1300°C, the kinetics are faster and the final amount of ferrite is even greater (7). These results indicate that the HAZ undergoes substantial microstructural changes during multipass welding, and these changes are likely to have an impact on the solidification behavior, final microstructure, and properties.

The figures also show that the approach to final equilibrium is often not direct. For example, for the Fe-21.9Cr-10.35Ni alloy at 1000°C, the ferrite chromium level initially decreases with aging, but with additional aging time, the chromium level recovers somewhat. This behavior was found under other conditions as well (7). It can also be seen that the change in ferrite content proceeds in two stages; as shown in Figure 4(b) for the Fe-21.9Cr-10.35Ni alloy. At other aging temperatures, it was

Fig. 4 - Calculated ferrite content versus aging time at (a) 1000°C and (b) 1200°C.

Fig. 5 - Average chromium compositions of ferrite and austenite as a function of aging time at (a) 1000°C and (b) 1200°C.

Fig. 6 - Average nickel compositions of ferrite and austenite as a function of aging time at (a) 1000°C and (b) 1200°C.
found that the ferrite content may increase before eventually decreasing, or vice versa (4,7,16). These indirect paths toward final equilibrium were investigated further, and it was determined that the effects were real; these were not artifacts of the calculation procedure. They arise from the condition of equilibrium at the interface and the required balance of chromium and nickel fluxes at the interface to yield a consistent value for the instantaneous growth rate of ferrite (4,7,16). Generally speaking, the behavior at early times is controlled by the ferrite diffusion, which is nearly two orders of magnitude greater than the diffusion in the austenite. At later times, the austenite-diffusion controls the equilibration process. Due to the nature of ternary and higher component systems, the tie line—that relates the ferrite and austenite compositions in equilibrium at the interface is not fixed. Thus, the equilibrium interface compositions may, and do, change as a function of time. As a consequence, the fluxes at the interface also change, and this may result in irregular behavior such as ferrite growth initially, followed by ferrite dissolution. The reverse from growth to dissolution has been observed experimentally in austenitie stainless steel diffusion couples (10). Similarly, the change in tie-line compositions can also lead to reversals in the ferrite or austenite compositions as a function of time. This behavior is examined in more detail elsewhere (7).

Calculations were also made for non-isothermal heat treatments in which different constant cooling rates were utilized to simulate the cooling of the HAZ during welding. These calculations were performed for the Fe-21Cr-11.3Ni alloy. The initial ferrite (23.6Cr, 8.38Ni) and austenite (19.49Cr, 12.88Ni) compositions, as well as the amount of ferrite (36.7%), were adjusted to represent approximately the compositions and amounts present in equilibrium at elevated temperatures (1300°C). The ThermoCalc program was utilized to determine the high-temperature equilibrium state. The procedure calculated the composition profiles in the ferrite and austenite during cooling from 1300 to 700°C, at a constant rate of 0.1, 1, 10, or 100°C/s. The ferrite content, and ferrite and austenite compositions are plotted as a function of temperature in Figures 7 through 9, respectively. The equilibrium ferrite content and ferrite and austenite compositions as a function of temperature are also shown in the figures (dashed lines are interpolations over temperature ranges where the ferrite is not stable). The plots show, in general, as the cooling rate increases, the deviation from equilibrium increases as well. In addition, the curves show at what point the ferrite content, or phase compositions, no longer change appreciably with further cooling, in effect representing the temperature at which the microstructure is effectively quenched. As is to be expected, at the higher cooling rates, the compositions or ferrite content are quenched in more quickly. These curves can be used to determine the residual ferrite content and the phase compositions that are retained at room temperature as a function of those process conditions which affect the cooling rate, such as power, plate size, and welding speed.

A curious effect is found for the ferrite nickel content as a function of cooling rate [see Figure 8(b)]. Whereas at the highest cooling rate (100°C/s), the ferrite nickel content deviates almost immediately from the equilibrium value and remains higher than the equilibrium compositions, the same is not true at the lower cooling rates. In fact, in the range from 1000 to 1200°C, the 10°C/s condition actually has a ferrite nickel content that is closer to equilibrium than that found at the lower cooling rates of 1 and 0.1°C/s. Furthermore, for the three lowest cooling rates, the ferrite nickel content is less than that found in equilibrium, indicating that the change in composition is actually greater than that for the equilibrium state. A more detailed examination of this behavior shows that it is a real effect that can be readily explained. As noted above, for some isothermal aging conditions, the ferrite nickel content may quickly decrease, initially, and then increase with additional aging time. This is, in fact, the situation for the Fe-21Cr-11.3Ni alloy at 1200°C, when the starting compositions are

Fig. 7 - Calculated ferrite content versus temperature as a function of cooling rate from 1300 to 700°C.

Fig. 8 - Ferrite (a) chromium and (b) nickel compositions as a function of temperature for different cooling rates.
Fig. 9 - Austenite (a) chromium and (b) nickel compositions as a function of temperature for different cooling rates.

set at the equilibrium values at 1300°C. The starting ferrite nickel content is 8.58%, and the nickel concentration decreases quickly at first and then increases (4). During cooling at the slowest rates (0.1 and 1°C/s), there is sufficient time for the ferrite nickel level to reach this minimum value, while at the 10°C/s rate and higher, this minimum nickel level is not reached. Thus, the change in nickel content is less in the 10°C/s case than for slower cooling rates, and this smaller change is actually closer to the final equilibrium nickel level. It is noteworthy that this trend does not hold true for the chromium concentrations. Thus, the model calculations yield results that are understandable but not always intuitive. These findings suggest that model calculations are quite valuable, in that they predict behavior that cannot be followed experimentally and would not be expected from simple intuitive arguments.

Summary

An implicit, finite-difference model has been developed and applied to study the diffusion-controlled ferrite-austenite transformation in austenitic stainless steel welds. The model was applied to two Fe-Cr-Ni alloy compositions. The calculations provide valuable information on the microstructural development in these steels as a function of thermal treatment. In particular, the conditions of isothermal aging at 700 to 1300°C and constant cooling from 1300°C were evaluated, and the quantities that were determined include ferrite content and average ferrite and austenite compositions. The model results also provide valuable information on the kinetics of the transformation reactions. These quantities are desirable to know because they play a major role in determining the weld properties and may also be influential in the solidification process. Furthermore, these quantities are often difficult to measure experimentally, especially at the elevated temperatures to which the HAZ microstructures are exposed.

Acknowledgments

This research was sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems. The authors would also like to thank Y. S. Iskander for help with the calculations, and K. Spence, Dr. S. S. Babu, and Dr. M. K. Miller for their reviews of the paper.

References