
SANDIA REPORT
SAND96-1113 UC-706
Unlimited Release
Printed April 1996

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney

,"I<

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department,of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.
, I I , , , a ,

,

> I , , t ' b , I

,?:,,'' , ,

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

SAND96-1113
Unlimited Release
Printed April 1996

Distribution
Category UC-706

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney
Assessment Technologies Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

SARS is a data acquisition system designed to gather and process radar data eom aircraft
flights. A database of flight trajectories has been developed for Albuquerque, NM and
Amarillo, TX. The data is used for safety analysis and risk assessment reports.

To support this database effort, Sandia developed a collection of hardware and software
tools to collect and post process the aircraft radar data. This document describes the data
reduction tools which comprise the SARS, and maintenance procedures for the hardware
and software system.

I____--.

Acknowledgments

The author wishes to acknowledge the contributions Tom Lin and Norm Grandjean of
Sandia National Laboratories made to the SARS project. They developed and tested many
of the algorithms that make up the SARS.

'

Bob Roginski of Sandia National Laboratories provided sorting algorithms and technical
consulting throughout the SARS project.

David Skogmo of Sandia National Laboratories provided hardware, software, and
configuration support for the SARS project.

Table of Contents
1 . Introduction ... 1

2 . Overview of SARS .. 1

3. Data Collection Software ... 5
3.1. Zone 4 Software Description ... 5
3.2. Radar File Formats .. 6

3.2.1. Beacon File Format .. 6
3.2.2. Filtered Primary Radar Format ... 8
3.2.3. Unfiltered Primary Radar Format ... 8

3.3. Zone 4 Compile Instructions .. 10
3.4. Additions/Modifications to Zone 4 Software .. 11

3.4.1. Green Strip/Electronic File Time Correlation .. 11
3.4.2. Zone 4 Display Screen ... 13

3.5. Zone 4 Software Diagram .. 14
3.6. Zone4 Module Description ... 14

3.6.1. ZONE4A.BAT File .. 15
3.6.2. Zonea Executable File ... 16

4 . Postprocessing Software .. 21
4.1. Sanitize Software Description .. 21
4.2. Sanitize Calling Sequence ... 22
4.3. Sanitize Subroutine Description ... 22
4.4. Sortdata Software Description ... 24
4.5. Sortdata Calling Sequence .. 24
4.6. Sortdata Subroutine Description .. 25
4.7. Sortflt Software Description ... 27

4.7.1. Flight Index File Description ... 27
4.7.2. Beacon Index File Description ... 29
4.7.3. Sottflt Report File Description .. 30

4.8. Sortflt Include File .. 32
4.9. Sortflt Calling Sequence .. 34
4.10. Sortflt Subroutine Description .. 35
5 . Aircraft Viewing Software .. 41
5.1. Plotflt Software Description ... 41
5.2. Main Program Description ... 42
5.3. Main Program Calling Sequence ... 43
5.4. Plot Display Mode .. 44

5.4.1. Overview .. 44
5.4.2. Plot Display Process .. 45

5.5. Data Input Mode .. 46
5.5.1. Overview .. 46
5.5.2. Data Input Process ... 47

5.6. Plotflt Include File .. 48
5.7. Plotflt Function Descriptions .. 49

5.7.1. Main Function Headers .. 51
5.7.2. Plot Display Function Headers ... 54
5.7.3. Data Input Function Headers ... 55
5.7.4. Plot Display and Data Input Function Headers .. 65
5.7.5. General Purpose Function Headers ... 69

5.8. Pantex Plot Projection ... 75
5.9. VGA Pixel Coordinate System ... 78
6 . References .. 81

.....

iii

.....

List of Figures

Figure 2.1 . SARS Hardware. Data Collection and Post-processing System .. 2
Figure 2.2 . FAAEARS Interface .. 3

Figure 3.2 . Sample Flight Arrival Green Strip ... 11
Figure 5.1 . Main Program Diagram .. 42
Figure 5.2 . Sample Plot Using Display Mode ... 44
Figure 5.3 . Display Mode Process Diagram ... 45
Figure 5.4 . Data Input Process Diagram .. 47
Figure 5.5 . Radar Source and Recording Coordinate Systems ... 75
Figure 5.6 . Pantex Slant Range Diagram ... 76
Figure 5.7 . Pantex Pixel Coordinates ... 78

. Figure 3.1 . Zone 4 Output Screen .. 5

List of Tables

Table 3.1 . Beacon File Format ... 6
Table 3.2 . Filtered Primary Radar Format .. 8

Table 4.1 . 6940201 . IDX Flight Index Table ... 28
Table 4.2 . 6940201 .BID Beacon Index File ... 30

Table 3.3 . Unfiltered Primary Radar Format .. 9

iv

1 m Introduction
SARS is a system developed by Sandia for support in environmental studies at the Jupiter
test facility in Albuquerque and the Pantex Plant in Amarillo, TX. Aircraft crash was
determined to be a significant contributor to the environment if a crash occurred near a
specific target. To support the analysis, Sandia developed a method to gather and analyze
aircraft rad& data in an efficient manner.

SARS is a hardware and software system which was developed to collect and analyze
radar data. Although implemented for Amarillo and Albuquerque air traff ic centers,
SARS not site specific. The software and hardware configurations are the same for both
airports.

This’ document describes the hardware and software system which comprise the SARS. It
describes changes and enhancements made to existing software and provides
documentation for new software. It is written for system personnel and programmers
responsible for maintenance of the SARS system.

2. Overview of SARS
The production hardware ties directly into the radar facility at the local airport. The
hardware responds to a input signal from the source radar and displays a point (or pixel)
on the PC VGA screen. The dot represents the actual location of the aircraft as it flies
overhead. A series of dots represents the entire flight path for the aircraft.

The hardware includes two PC’s linked to two digitizers. The data is recorded on the local
hard drive for each machine. Two machines are used a pseudo fault tolerant setup in case
of failure.

Figure 2-1 depicts the interaction between the hardware, data collection sohare , and
post-processing software.

1

FAA Radar I
i Digitizer -7-l Digitizer

,.-..

s Disk

r? Plotflt

+-I Collection Data I

Post-
processing
Software

Viewing
Software

Figure 2-1. SARS Hardware, Data Collection and Post-processing System

2

Intentionally Left Blank

4

3. Data Collection Software

3.1. Zone 4 Software Description
Zone4 is the name of the primary data collection software. It is a modified version of the
security detection software named RAMS (Radar Airspace Monitor System). This
program processes radar signals from the FAA air traffic control center and converts the
signals into graphics (see Figure 3-1). The flight paths consist of x,y,z coordinate
information. The z component represents the elevation. These flight paths are saved to
an ASCII formatted file while the graphics is displayed. The format is described in section
3-2.

Figure 3-1. Zone 4 Output Screen

Figure 3-1 shows the flight trajectories plotted on the VGA display. This is a subset of
actual flight data over Albuquerque on October 7,1995. On the display, flight 4254:61 is
plotted as a series of pixels or points near the center of the screen. The Beacon ID for this
flight is 4254 and the elevation is 61 times 100 = 6100 feet. This flight is a takeoff
heading to the southwest.

Zone 4 a real time program; the air trafltic is plotted as it enters the airspace with
minimum latency. The operator interface is shown on the left side of the screen. The
additions and modifications to the original RAMS program are described in section 3.4.

5

3.2. Radar File Formats
Two types of radar are processed Beacon and Primary. Beacon radar requires that the
aircraft have a transponder in order to communicate with the air t r a E c tower. The

. Beacon code is a four digit number that is unique for a given time frame (e.g. 4254). Most
commercial flights and large commuter aircraft use a Beacon ID'S to identify the aircraft.
Primary radar reflects off the skin of the plane. All aircraft, including commercial flights,
are tracked by primary radar. Although not shown in Figure 3-1, primary radar will plot
as a series of white dots near the trajectory of the Beacon radar path. The Beacon
trajectory will plot as a series of blue dots. Small aircraft may or may not have a Beacon
path, but it will always have the primary path plotted.

As a flight passes overhead, the radar data is captured to a file as it is displayed. At the
end of the day, the file is closed and the next day is opened. Three types of radar files are
saved for further analysis: Beacon, filtered primary, and unfiltered primary.

3.2.1. Beacon File Format
The Beacon radar file name use this format: BYYMMDD.DAT (e.g., B951107.DAT), where
B is the first character, followed by the year, month, and day. An example of an unsorted
Beacon file is shown is Table 3-1.

9511151459008
9511151459018
951115145902s
951115145903s
951115145904s
951115145905s
951115145900P
951115145901P
951115145902P
951115145903P
951115145904P
951115145905P
951115145900P
951115145901P
951115145902P
951115145903P
951115145904P
951115145905P
951115145900P

145925
145925
145925
145925
145925
145925
145929
145929
145929
145929
145929
145929
145934
145934
145934
145934
145934
145934
145938

Table 3-1. Beacon F'ile Format

6

0452 64
0423 54
4357 77
0743 61
2602 50
7243 50
0452 64
0423 54
4357 75
0743 60
2602 50
7243 50
0452 65
0423 54
4357 73
0743 61
2602 50
7243 50
0452 66

Each record in the Beacon file is fked length 49 bytes.

The flight records are structured as follows:
Column (1:2)
Column (3:4)
Column (5:6)
Column (7:8)
Column (9:lO)
Column (11:12)
Column (13:13)
Column (1516)
Column (17:18)
Column (19:20)
Column (22:30)
Column (32:40)
Column (42:45)
Column (47:49)

Year
Month
Day
Start hour of flight (GMT)
Start min. of flight (GMT)
Flight sequence number (00 through 99)
(S)tart, (P)rogressive point, or (E)nd of flight
Time 1 - hour of flight
Time 1 - min. of flight
Time 1 - seconds of flight
X coordinate - true north (in feet)
Y coordinate - true north (in feet)
Beacon ID or squawk code
Elevation * 100 (in hundreds of feet)

Columns 1 through 13 are referred to as the unique ID of the flight. Every recorded flight
will have one unique ID. This unique string is useful for sorting data.

Column 13 determines the complete path of a flight. The S(start), P..P..P..., E(end)
sequence must be set for a good flight. The first 13 characters of each record (e.g.,
940201101301S) are used throughout the programs as a unique identifier. The flight
sequence number ranges fkom 00 through 99. This means 100 maximum flights can be
recorded at one time.

The first record fkom Table 3-1 is idenfied by its individual components.

951115145900S 145925 +1.33e+04 +1.79e+04 0452 64

Column 1:2 - (95) Year
Column 3:4 - (11) Month

Column 7:8 - (14)
Column 9:lO - (59)
Column 11:12 - (00)
C o l ~ m n 13 - (S)
Column 1526 - (14)
Column 17:18 - (59)
Column 19:20 - (25)
Column 22:30 - (+1.33e+04) X coordinate true north (in feet)
Column 32:40 - (+1.79e+04) Y coordinate true north (in feet)
Column 42~45 - (0452)
Column 47~49 - (64)

Column 5:6 - (15) Day
Start hour of flight (GMT)
Start minute of flight (GMT)
Sequence number of flight
Start of flight
Time 1 recorded hour of data point (GMT)
Time 1 recorded minute of data point (GMT)
Time 1 recorded seconds of data point (GMT)

Beacon ID or squawk code of aircraft
Elevation * 100 = 6,400 ft.

7

3.2.2. Filtered Primary Radar Format
Usually all objects made of metal will be picked up by primary radar. Filtered radar data
implies slow moving vehicles (e.g., trucks on a highway) are filtered fiom the raw data.

The filtered primary radar file name use this format: RYYMMDD.DAT (e.g.,
R951107.DAT), where R is the first character, followed by the year, month, and day. An
example of an unsorted, filtered primary radar file is shown is Table 3-2.

9511151459008
951115145901S
95 1115 145902s
951115145903s
951115145900P
951115145901P
951115145902P
951115145903P
951115145900P
951115145901P
951115145902P
951115145903P
951115145904s
951115145900P
951115145901P

145925
145925
145925
145925
145929
145929
145929
145929
145934
145934
145934
145934
145934
145938
145938

+1.84e+04
-3.49e+04
-2.67e+04
+5.00e+03
+1.92e+04
-3.52e+04
-2.64e+04
+5.00e+03
+2.03 e+04
-3.5 0 e+04
-2.58e+04
+5.24e+03
+4.63e+04
+2.lle+04
-3.54e+04

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 3-2. Filtered Primary Radar Format

The format of the filtered primary radar file is the same as the Beacon format. Each
record is fixed length 49 bytes. This type of radar reflects off the skin of the aircraff, there
will not be a Beacon ID or elevation associated with the flight. These values are set to 0
by default.

3.2.3. Unfiltered Primary Radar Format

Unfiltered radar will capture all moving objects, flocks of birds, and additional noise (e.g.,
radar antennas). These unfiltered files become very large. Eleven megabytes per day in
Albuquerque is typical.

P951107.DAT), where P is the first character, followed by the year, month, and day. An
example of an unfiltered primary radar file is shown is Table 3-3.

. The unfiltered primary radar file name use this format: PYYMMDD.DAT (e.g.,

8

TIME= 145 9: 15
658 261
347 373
961 577
309 636
691 728
795 1012
795 1630
442 1635
309 2076
397 2180
398 2184
743 2475
625 2756
392 3084
606 3460
903 3911

TIME=14:59:20
660 273
351 356
946 571
309 636
697 726
807 1621
442 1648
309 2076
398 2216
397 2216
753 2497
623 2764
386 3089
903 3916

Table 3-3. Unfiltered primary Radar Format

The format of this me is different from Beacon or filtered primary radar. Each flight
starts with a TIME=HH:MM:SS syntax. The points that follow are the x and y
coordinates of the flight path in screen pixels. The pixel values are converted within the
Zone4 program &om true north coordinates to screen coordinates.

9

3.3. Zone 4 Compile Instructions

The Zone4 software is controlled from a batch file name ZONE4A.BAT. It is executed
from the command line in DOS: ZONE4A
A listing of ZONE4.A.BAT for the Albuquerque radar follows:

@echo off
:start
C A L M S
if errorlevel 1 SETDIG
if errorlevel 1 ZONEA
if errorlevel 1 goto bottom
SLEEP 180
rem ctlaltdl causes a warm reboot of the computer
goto start
CTLALTDL
:bottom
CTLALTDL
echo on

The words in capital letters are programs that are invoked from the batch file.
CALLRAMS dials up the digitizer at the local a i rpor t from a modem. SETDIG colrfigures
the digitizer for Beacon and primary radar. ZONEA is the main program for data
collection. The SLEEP and C U T D L are programs that are used in case there is an
error in the previous programs. Errorlevel 1 represents success; the next program will run
only if the previous program hished successfully. If not, the computer wil l reboot.

ZONE4A is usually called from the autoexecbat file. The s o h a r e resides in a directory
name zone4a on the recording computer. At the bottom of the autoexecbat .file there
should be two entries:
cd zone4a
zone4a

The configsys file in DOS should have the following entries:
files=30
buffer=$O

Note: To prevent memory conflicts, there should be no memory managers (e.g., himemsys)
or other memory resident software (i.e., TSR's) loaded.

The Borland Turbo C++ 3.0 compiler for DOS was used to compile all of the programs
associated with Zone4. A project file was required for the zonea.exe He. The path to
\TC\BIN must be set before using the compiler.
The following procedure creates the Zonea executable file:

10

Typein: TC
Select the OPEN PROJECT menu option
Select the ZONEA.PRJ file
Select the COMPILE menu option
Select the BUILD ALL option

3.4. Additions/Modifications to Zone 4 Software
The Zone 4 software was modified &om the original RAMS software for two specific
reasons. First, the original RAMS software was not set up to handle a continuous,
uninterrupted data stream. Zone 4 was created to handle user interrupts (i.e., disk
change) without losing any real time data. Zone 4 also handles real time backup to
multiple devices.

Second, the RAMS software was not set up to match the electronic data to the air trafsc
flight strips (i.e., green strips). The green strips contain pertinent information for safely
analysts that is not contained in the electronic recorded data (e.g., aircraft type, aircraft
ID). "he information contained on the flight strips is required for safety analysis.

3.4.1. Green Strip/Electronic File Time Correlation
By default, the green strips are computer generated with GMT (Greenwich Mean Time) or
UCT (Universal Coordinate Time). The local recorded data is adjusted to match the green
strips. A sample green strip is shown is Figure 3-2.

SWA702 I 422 I A1615

T/B73s/A I sJN

I 463

IFR

Figure 3-2. Sample Flight Arrival Green Strip

In this example, the aircraft ID is SWA702, the aircraft type is TB73S/A, the Beacon ID is
4222 and the arrival time is 16 hours 15 minutes GMT.

11

Table 3-4 shows the correlation between the local time, the PC clock, and GMT. For the
Albuquerque airport, green strips are picked up at 9 PM local time. In order to match this
time with GMT, the PC clock and the Zone4 software is adjusted internally t o match the
green strip.

Table 3-4 Green Strip/Electronic File Correlation

The objective in Table 3-4 is to match the green strip time to the final time. Since the
green strip day ends on a different day than GMT, an adjustment is made t o the data
before it is saved to disk. For example, ifwe are in Albuquerque during DST and the wall
clock is 9:00 PM, GMT time will be 6 hours ahead at 3:OO AM. Since 9 PM is the
scheduled pick up time for the green strips, the Zone 4 program will close the current
green strip day and open up the next day. The PC clock is set to 0O:OO AM, then an offset
of 3 hours is applied to the data before it is written to disk. The 9:00 PM local flight will

12

be recorded on disk as 3:OO AM GMT. This method will correlate the green strip time
(GMT) with the recorded flight.

3.4.2. Zone 4 Display Screen
The output screen shown in Figure 3-1 was modified to accommodate the disk change
utility. The menu choices are listed as follows:

r - start rain mode
s - stop rain mode
c - change backup disk
d - end change disk
q - quit program

The rain mode operation is useful if there is a rain or snow shower in progress. This will
cause the primary radar to return unwanted noise thus increasing the primary radar file
size. By pressing “r”, start rain mode, the computer will not process primary radar until
the “s”, stop rain mode key is pressed, or by default, an elapsed time of two hours. At the
end of two hours, the primary radar will begin to record.

The option for disk change is letter “c.” This will close the file on the recording cartridge
(typically a Bernoulli Lasersafe) and prompt the user to change the cartridge. A
temporary file is created on the alternate backup device while the disk change occurs. The
temporary file is copied back to the new cartridge after it is put in the Lasersafe drive.
The “d” key is pressed after the cartridge is changed. This method prevents data loss
while allowing the user to capture the recorded data.

The configuration options for the backup device and time zone offsets are read at startup
f?om the configuration f le SITE.CFG. It has the following format:

C: \ZONEDATA\ ;backup directory
1 ;backup flag 0-disable 1-enable
E
C
4

;primary backup disk (E is Lasersafe Plus)
;alternate backup device (for temp mes)
;Albuquerque o&et hours DST=3 MST=4

The first line C:\ZONEDATA, specifies where the raw data files are stored. The second
line speczes that the data wil l record to a backup device. A value of 1 enables backup
while a value of 0 will record data on the C: drive only without a duplicate copy. The third
line shows the device name ifline 2 is enabled. In this example, the primary cartridge
backup is logical device E:. The fourth line shows where the alternate backup device is as
the disk change occurs. This is the device where temporary files are copied. The last line
show the offset hours from the PC clock. If the PC clock is set to 6 am, the offset is applied
to the recorded time and saved as 10 am if the offset is 4.

13

. 3.5. Zone 4 Software Diagram
Figure 3-3 shows the logical flow of the Zone 4 software. The process stays in an
continuous loop once the connection is established to the digitizer.

Dial Modem Lr'

I,

Figure 3-3. Zone 4 Software Diagram

3.6. Zone4 Module Description
The following list shows the entire module set for the Zone4 software. l b o groups are
listed the s o h a r e for the batch file and the software for the zonea executable. A brief
description of each module is listed.

14

3.6.1. ZONE4A.BAT File
CALLRAMS.C - Callrams is a program that uses the Telebit TlOOO modem to dial up the
digitizer. It reads site specific information (e.g., phone number, access password) from the
file PSW.CFG. The format of the PSMAP.CFG is listed:

0.00 ;xd=east/west coordinate in nautical miles &om radar for program arb only
0.00 ;yd=north/south coordinate in nautical miles from radar
196.8 ;rceli=beacon range cell size in feet
196.8 ;rrcell=primary range cell size in feet
11.52 ;maxrg=coverage radius in statute miles
853.33 ;antrotrate=& azimuth ticks/sec=4096/period
1.0 ;tripradsq=radius of trip wire in miles
XXMI ;password=password for digitizer
2 ;mode O=primary only. l=beacon only, 2=both
300 ;rgerr=beacon range error in range cells
-100 ;azerr=beacon azimuth error in azimuth ticks
245 ;rrgerr=primary range error in range cells
-100 ;razerr=primary azimuth error in azimuth ticks
ATDT2433178 ;modcmd=digitizer telephone number as a command to the modem
10.73 ;pfactor=10.73
c~~~5kfeet;9.25@0ft;9.52@lkft;9.80@2kffy10. 10@3kft;10.49@4kf%
1
367.0
59.0
300.0

;pressdefault. if 1 accept default pressure of 29.92 else stop and get pres.
;maxtvel max threat speed in Wsec. Faster than this is discounted.
;mintvel min threat speed in Wsec. Slower than this is discounted.
;maxcrosstime in sec. Approach taking longer than this to cross are discounted

SETD1G.C
Setdig is a program used to configure the SRAMS digitizer.
It expects to find a disk file named PSMAP.DIG containing the Sormation
to configure the digitizer. The file should appear as shown below.

2
3
6
1
0
0
0
0
0
1
BF8
F20
130
30C

;mode O=primary only,l=beacon only,2=both
;beacon threshold. must have a value even if beacon not used.
;primary threshold. must have a value even if radar not used.
;pedit option: l=beacon shares edit signal, else 0. must have value.
;begin an edit parameter set 0 for clear 1 for set to 1. or end file.
*&ST IN HEX, top three and bottom three bits=O
@SP IN HEX, DITTO
;RGST IN HEX, TOP 4 BITS AND BOTTOM 2 BITS =O
;RGSP IN HEX, DITTO
-NEXT EDIT PARAMETER SET HERE FOR 6 MICJ3 BLOCK
b S T
@SP
;RGST
;RGSP This line and all others must end with a line feed.

15

Z0NEA.C
Program to track Beacon and Primary radar flight tracks. The data is saved into

. individualfiles.

SLEEP.C .
If an error occurs with ZONEA, the program will put itselfin suspend state with the sleep
function. The program sleep will put the computer in a wait state for the specified
number of seconds on the command line. For instance, the command sleep 180 will sleep
for three minutes.

C%TDL.C
This program wil l causes a warm reboot of the computer. It is the equivalent of pressing
the CTL-ALT-DEL keys. This function is used in case of a non-recoverable error.

3.6.2. Zonea Executable File
The following list shows the correlation between the PC filenames and the actual module
names listed in the project file Z0NEA.PR.J. There is a total of 24 modules in zonea.

File Name
B m 0 N A . C
BTRMZ0NE.C
CHGDISKC
CHKDFl3BE.C
COMBINZ. c
C0PYTMP.C
DELFII;ES.C
ELET7Z.C.
FILECPY.C
GETDRLET.C
INIB0xz.c
M0NTHCVT.C
0PENBFIA.C
0PENRFIA.C
RC0MBINZ.C
RTRKZ0NA.C
RTRMZ0NE.C
S1TECFG.C
TBLINKZ.C
uNPKl3z.c
uNPKRz.c
XSTRZ.C
z0NEA.c
z0NEscm.c

Module Name
rtrack
btrimplt
chgdisk
chkdjkee
combine
COPytmP
deEles
initelev
filecpy
getdrlet
inibox
monthcvt
openbfil
o p e d
rcombine
rtrack
rtrimplt
sitecfg
tblink
unpkb
m P k
xstr
zonea
safescrt

16

A brief description of each module is listed. More detail can be found in reference
[Skogmo]. The modules in bold text are either modified or new additions to the original
RAMS software.

BTRKZONA (module name: btrack) - This function provides tracking for the SRAMS
Beacon radar data. It operates on a list of plane positions derived by the function btrimplt
from Beacon radar data and converted x,y coordinates in feet fiom the site. The output of
btrack is a list of plane positions at the plotting instant and their velocities.

BTRMZ0NE.C (module name: btrimplt) - This function accepts an may of range and
azimuth Beacon radar reports and converts the array to Cartesian coordinates in feet fkom
the position xd, yd. It t r ims out any points outside of the sector of interest defined by
maxrg.

CHGDISEC (module name: chgdisk) - This function swaps the primary and alternate
backup devices. It also changes the input filename extension from .dat to .imp or .tmp to
.dat. For instance, if the primary disk is E: and the alternate is C:, the function will swap
these values from E: to C:. This function is required for a disk change.

C33KDFREE.C (module name: chkdfkee) - This function wil l check the available disk
space on the selected drive. A warning beep will sound if the recording disk is more than
80% full.

C0MBINZ.C (module name: combine) - This function combines multiple hits that are
&om the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, and don't have dissimilar id's, they are combined. This function is used for
Beacon tracks.

C0PyTIMp.C (module name: copytmp) - This function copies the input file to the
alternate backup device defined in SI"E.CFG. This is required for a disk change. Calls
routines chgdisk and filecpy.

DELFILJ3S.C (module name: delfiles) - Delete all files in the C:\ZONEDATA directory
that are older than 29 days. This prevents the C: drive fkom overloading. Calls routine
month&.

ELEV2.C (module name: initelev) - This function initializes the constant arrays used by
the function elevation. The elevation function is included in the ELEVZ.C file.

FILECPY.C (module name: filecpy) - This function copies one $le to another and
returns the number of bytes copied.

17

GETDRLET.C (module name: getdrlet) - This function returns the integer value for
the disk device (i.e., A returns 0, B returns 1, ...)

INIB0xZ.C (module name: inibox) - This function checks t o see if a point falls within a
1 group of 4-sided polygons.

M0NTHCVT.C
month representing the integer for that specific month (i.e., JAN returns 01). Called f?om
function delfiles.

(module name: monthcvt) - This function returns a two character

0PENBF'IA.C (module name: openbfil) - This function creates a descriptor for a plane
based on the date, hour, and minute plus a two digit tag to allow for 100 concurrent
planes. It writes the opening record for the plane into the Beacon file. This routine was
modified to accommodate the offset bows t o GMT. The following code segment shows the
algorithm:

temphours = hours + offsethours
hours = temphours mod 24
write outputfile hours

The mod function is used to adjust for times greater than 24 hours (e.g., 24=0,25=1).

OPENRFIkC (module name: o p e d) - This is the same function as openbfil except it
is used t o open primary radar files (R f3es).

RC0MBINZ.C (module name: rcombine) - This function combines multiple hits that are
from the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, they are combined. This function is used for primary radar tracks.

RTRKZ0NA.C (module name: rtrack) - This function provides tracking for the SRAMS
primary radar data. It operates on a list of plane positions derived form the.primary radar
data and converted x,y coordinates in feet &om the site. The output of rtrack is a list of
plane positions at the plotting instant and their velocities.

RTRMZ0NE.C (module name: rtrimplt) - This function t r ims out points outside the sector
of interest defined by maxrg. It operates on primary radar data.

-

S1TECFG.C (module name: sitecfg) - This function reads site specific global variables
&om the SITELCFG file. The backup flag determines if a copy of the data is needed for the
alternate device.

TBLINK2.C (module name: tblink) - This is a display function. It blinks the recent points
plotted from their plot color to yellow in exclusive or mode. The state of the flash color
(yellow or plot color) is given by the global variable flash, which is toggled by blink each
time.

18

WKBZ.C (module name: unpkb) - This function moves the Beacon data from the receive
buffer into the range, azimuth, id, and el bufJFers.

UNPKR2.C (module name: unpkr) - This function moves the primary radar data fro the
receive b e e r into the range and azimuth buffers.

XSTRZ.C (module name: xstr) - This function draws the character string at point x, y in
the passed color in exclusive or mode. This module contains the function xordot.

Z0lWA.C (module name: zonea) - Zonea is the main program for data collection. It
writes all processed data into the respective files (Beacon, primary, and unfiltered).

Z0NESCRN.C (module name: safescrt) - This function displays the local site map.

In addition to the modules, there are common include files used in the data collection
program.

C0MNEwZ.C - This file contains the communications library for SRAMS.
GETCFG.C - Reads site specific idormation into global variables from the file
PSMAP.CFG

READLINE - Reads characters fkom the passed stream into the passed b e e r until the \n
character is encountered. It terminates the buff'er with a 0.

Z0NEDEF.C - This file is the include file for all of the routines. It contains dekitions
and h c t i o n prototypes.

19

Intentionally Left Blank

20

. I .~

4. Postprocessing Software

4.1. Sanitize Software Description

The SANITIZE program does basic sanity cb
in the file
The input

cks on the input radar file. All the records
we 49 bytes long; if not, we p&t out the record number and the illegal string.
radar file can be raw (.DAT) or sorted (SRT) format.

Column 13 is checked for a valid S, P, or E character. If the character is missing or
invalid, we have bad data - a message and the line number is printed.

Filename: SANTIZE.FOR

Compiler: Fortran Powerstation Ver. 1.0a for DOS

Compile instructions: FL32 SANITIZE.FOR

To execute: SANITIZE flename, e.g., SANITIZE B950112.DAT

The structure of the raw Beacon radar file is listed
Each record is fixed length 49 bytes.

940201101000S101017+7.37e+03+5.44e+041200 53
9402011010013 101017 +1.42e+04 +1.02e+04 0475 68
9402011010028 101017 +3.16e+04 +1.00e+04 0764 -20

The records are structured as follows:
Column (1:2) Year
Column (3:4) Month
Column (56) Day
Column (723) Start hour of flight
Column (9:lO) Start min of flight
Column (11:12) Flight sequence number (00 thru 99)
Column (13:13) (Sltart, (P)rogressive, or (E)nd of flight
Column (15:16) Time 1 - hour of flight
Column (17:18) Time 1 - min of flight
Column (19:20) Time 1 - seconds of flight
Column (22:30) X coordinate - true north
Column (32:40) Y coordinate - true north
Column (42:45) Beacon ID or squawk code
Column (47:49) Elevation * 100

21

4.2. Sanitize Calling Sequence

Two subroutines are used in SANITIZE. A brief description of each subroutine follows:

IXECAD-FJLE - open up input file
CHECK-SPE - checks SPE count

The routines are all called fkom the main program. The calling sequence follows:

Read the input file &om the command line
CALL REXD-FILE (IFILE)

Do sanity checks
CALL CHECK-SPE (IFIIJ3)

IFILE is a character variable read in fkom the command line. If the filename is not
entered the following message wil l appear on the screen:

*** PLEASE ENTER FILENAME ON COMMAND LINE ***
SYNTAX: SANITIZE [radar6lename]
e.g., ,SMTIZE B950126.DAT

Ifthe program completes successfully, the program wi l l print out the number of records in
the Eke. For example:

OUTPUT FROM SANITIZE:
FLUE B950112.DAT CONTAINS 11706 RECORDS.

4.3. Sanitize Subroutine Description

Function name: R W - F I L E
Purpose: Open up input file &nd count characters and total records
Parameters: WILE (input file name - character string)
Sample call: CALL READ-FILE (WILE)
Calls routine: none
Called &om: main program
Return value: none

Messages returned

22

If the input file cannot be found, the following message will appear on the display:
FILE B950112.DAT NOT FOUND

If a record is not equal to 49 bytes, the next message will appear:
Invalid record # = 1170

SUBROUTINE CHECK-SPE (IF’IIX)
CHARACTER*(*) IF’ILE

Function name: CHECK-SPE
Purpose: “ h i s routine does some basic sanity checks. First it determines if character
position 13 of the input record has a S, P, or E in that column. At least 1 character (S, P,
or E) must be found in column 13; if not a error message will be displayed on the screen.

The S,P,E characters represent the following:
S - start of flight
P - continuation point of flight
E - end of flight

The routine will check for a valid numeric in column 49 (elevation) This wil l coni irm that
the record is complete.

Parameters: IF’ILE (input file name - character string)
Sample call: CALL CHECK-SPE (IFILE)
Calls routine: none
Called from: main program
Return value: none

Messages returned:

If an invalid integer is found in column 49, the next error wil l appear:
Invalid integer in column 49 at line 1250

If an illegal character (other than S, P, or E) then the message will appear:
Illegal character in column 13 at line 1250

If there is not at least one record with an S, P:
messages will appear:

Starting records not found - DATA ERROR
No primary records found - DATA ERROR
No ending records found - DATA ERROR

or E in column 13, then one of the following

23

4.4. Sortdata Software Description

Filename: SORTDATA.FOR

This program reads and sorts the Albuquerque and Amarillo aircraft
flight data. The program reads input .from the Beacon radar file or
primary radkr (.DAT extension) and generates a sorted file
(.SRT extension). It is expected that the SANITEII program is run
before this program is executed. SORTDATA uses an index array (WX)
for sorting.

Compiler: Fortran Powerstation Ver. 1.0a for DOS

Compile instructions: FL32 SORTDATA.FOR

To execute: SORTDATA filename, e.g., SORTDATA B950112.DAT

File dependencies: S0RTDATA.INC is the required include file

The output file (.SRT extension) is sorted on two keys: the date/time stamp is the primary
key(fie1d 1, characters 1:13) and the secondary key is the start time of the flight (field 2,
characters 15:20). Sample output is listed below:

940201101000S 101017 +7:37e+03 +5.44e+04 1200 53
940201101000P101021+7.95e+03+5.52e+041200 52
940201101000P101026+7.80e+03+5.59e+041200 51
940201101000P101031+7.45e+03+5.63e+041200 51
940201101000P101036+8.10e+03+5.76e+041200 50
940201101000P 101040 +8,35e+03 +5.83e+04 1200 50
940201101000P101045+8.64e+03+5.92e+041200 50
9402011010003 101049 +0.00e+00 +O.OOe+OO 0000 0

4.5. Sortdata Calling Sequence
Three subroutines are used in SORTDATA. A brief description of each routine follows:

REXD-FlLfZ - open up input .file
SORT1 - perform modified shell sort
WRPIX-FlLE - write out sorted file

All routines are called from the main program. The calling sequence follows:

Read the input file from the command line
CALLREAD_FIL;E

Sort the input file based on the date/time stamp
24

An index array is used for sorting.
CALL SORT1

Write out the sorted file
CALL WRITE-FILE

M e r the program finishes, the following message will print to the screen:
OUTPUT FROM SORTDATA
A TOTAL OF 11706 RECORDS WRITTEN TO FILE B950112.SRT

All routines use a common include file named S0RTDATA.INC. This file contains
variables and arrays common for all routines. A lisf5ng follows:

Filename: S0RTDATA.INC - include file for SORTDATA.FOR

Global variable definitions:

MXRECS - maximum number of records in radar file
LINE -
IFILE - input f5le string
OFILE -
NR;ECS -
INDX -

array of 49 byte character strings

output file string (sorted file .SI%)
counter for number of records in file
index array (used for sort routines)

PARAMETER (MXRECS=300000)
CKARACTER LLNE"49, IFILE*12,0FILE*12
INTEGER NRECS, INDX
COMMON NRECS, LINEKMXRECS), INDX(MxRECS), IFILE, OFILE

Two arrays are declared with a dimension of 300000. Currently, this value is large
enough to hold all data records in memory for sorting.

4.6. Sortdata Subroutine Description
SUBROUTINE READ--
Function name: READ-FILE
Purpose:
This routine reads the filename from the command line and populates the LINE and
INDX global arrays.

Parameters: none
Calls routine: none
Called from: main program
Return value: none
Globals modified: NRECS, LINE, INDX

Messages returned
25

The input file variable, PILE, is declared as global and read in from the command line. If
the filename is not entered, then the following message will appear:

*** PLEASE ENTER FILENAME ON CONNIAND LINE ***
SYNTAX. SORTDATA [filename]
e.g., SORTDATA B950112.DAT

If the input file, PILE, does not exist then the next message will appear:
FILE B950112.DAT NOT FOUND

If the input file exceeds the MXRECS of 300000, then the next message will appear:
*** EXCEEDED 300000 RECORDS ***

SUBROUTIIW SORTl
Function name: SORTl
Purpose:

This routine uses a modified shell sort using 2 keys:
the 1st is the datdtime stamp (1:12)
the 2nd is the flight time column (15:20)
This routine was obtained fkom Bob Roginski, 12333

Parameters: none
Sample call: CALL SORTl
Calls routine: none
Called from: main program
Globals modified INDX
Return value: none

Messages returned none

SUBROUTINE WRITELFILE
Function name: 'WRITE-FILE
Purpose: write out the sorted filename (.SRT extension)
Parameters: none
Sample calk CALL WRITE-FILE
Calls routine: none
Called from: main program
Globals modXed none
Return value: none

Messages returned none

26

4.7. Sortflt Software Description

Filename: SORTFLT.FOR

This program separates the good flight data from the unresolved flight data. Three output
iiles are written: a .IDX iile for the flight number, start, and end points for the good flight
paths; a .BID file sorted by Beacon ID and a .RPT file for flight summary information.
These files are required if there is a need to plot the flight paths. This program will
process both Beacon and Primary radar files.

.

The good data has a continuos flight path; this is determined by the 13th column of the
input file. The input file is assumed sorted (.SRT extension)

Compiler: Fortran Powerstation Ver. 1.0a for DOS

Compile instruction: FL32 SORTFLT.FOR

To execute: SORTFLT filename, e.g., SORTF'LT B950112.SRT

Output files: Index files are required for viewing aircraft flight paths. The format of the
three output files (.IDX, .BID, and .RPT) is described below.

4.7.1. Flight Index File Description
This file is iixed length 138 byte ASCII records and is created with a .IDX extension (e.g.,
B950112.IDX). It contains summary information for every flight in a given day. Start
time, end time, start and end elevations and Beacon data is kept in the flight index file.
This scheme allows a quick search of the sorted radar file. It also contains the updated
information for the green strips. The index file is sorted by flight number (column 1). The
flight number is a sequential number, starting at 1, which represents the order in which
the flight appeared for a given day. The sequence pattern is 1,2,3,4, ...,; each flight will
be assigned a unique, sequential flight number. A sample index file (sorted by flight
number) is shown in Table 4-1. The data is &om Albuquerque on February 2,1994.

27

1 1 8 940201101000 1200 101017 101045 53 50 0 1 3 # ############ ############ # #### 0 ###I
2 9 68 940201101001 0475 101017 101458 68 121 0 1 1 # ############ ############ # #### 0 ###
3 69 989402011010020764101017101226 51 650 1 1##############################0###
4 99 1309402011010034240101017101235 791110 1 1##############################0###

. 5 131 13794020110100472621010171010402802800 1 l##############################O###
6 138 1639402011010051200101017101208 64 540 2 3##############################0###
7 164 17.9 940201101006 0473 101017 101121 77 60 0 1 1 # ############ ############ # #### 0 ###
8 180 19394020110100726671010171011131111170 1 1##############################0###
9 194 205 940201101008 4234 101017 101103 95 95 0 1 1 # ############ ############ # #### 0 ###

10 206 2189402011010090461101036101126 20 3 0 1 2
11 219 2529402011010100741101054101322 651340 1 l##############################O###
12 253 264 940201101100 0510 101154 101240 260 260 0 1 2 # ############ ############ # #### 0 ###
13 265 3149402011013001200101312101653 58 550 3 3##############################0###
14 315 34894020110130132411013351016032792600 1 l###################O##########O###
15 349 35794020110130205101013401014122602600 2
16 358 3929402011013032660101349101621 83 550 1 l##############################O###
17 442 4829402011015004206101507101808 70 562 1
18 483 5039402011015014206101507101635120 860 2
19 504 5239402011015024250101540101703 49 490 1 l##############################OW
20 561 56894020110160013101016351017033883910 1 .
21 569 5859402011016010461101645101755 50 600 2 .

Table 4-1. B940201.IDX Flight Index Table
The individual fields are defined below. The fist record is used for reference.

Field 1(1:8)

Field 2(9:15)

Flight number - this is the unique sequential number for the given
flight. In the file listed above, the flight number for the first record is 1.

Start; of flight record; this column ident5es the specific record for the
start of flight in the corresponding radar file (.SRT file). In the first
record, flight number 1 is the fist recorded flight on February 1.

Field 3(16:24) End of flight record. The end record in B940201.SRT is 8.

Field 4(26:37) Unique ID for flight (e.g., 940201101000). This field matches the unique
ID in the sorted radar .file. The 94 represents the year, 02 the month, 01
the day, 10 the start hour of the flight, 10 the start minute, and 00 the
sequence number for the flight. If two or more aircraft are flying at the
same time, then the second flight will use a 01 suEx, the third a 02
SUffiX.

Field 5(39:42) Beacon ID or squawk code (e.g., 1200).

Field 6(4449) Start time of the flight in HHMMSS (UCT or GMT) (e.g., 10:10:17)

Field 7(51:56) End time of flight in HHMMSS (GMT) (e.g., 10:10:45)

Field 8(58:60) Start elevation of flight (x 100) (e.g., 53*100=5,300 feet)

Field 9(62:64) End elevation of flight (x 100) (e.g., 50*100=5,000 feet)

Field 10(66:66) Flight indicator field. The indicator is defined as follows:
28

0 - good flight, no Beacon ID change
1 - Beacon ID changed from 1200 t o another number
2 - Any Beacon Id number changed to any other number
3 - BID 1200 changed to another number, then changed again

In the sample flight, the flight indicator is 0 (no BID change). This information is
important for attaching green strips to electronic data.

Field 11(71:71) Sequence number of Beacon ID (e.g., 1 of 3 total BID 1200 flights).

Field 12(76:76) Total count of Beacon ID’S (e.g., 3 total BID 1200 flights).

The next group of columns are updated when the green strip and display program
(PLOTFLT) is run.

Fld. 13(78:78)

Fld. 14(80:91)

Fld. 15(93:104)

Fld. 16(106:106)

Fld. 17(108:111)

Fld. 18(113:113)

Fld. 19(115:117)

Fld. 20(119:138)

WR,OF€Wnknown indicator. Three choices are allowed in this field:
U - Unknown, I - Instrument, V - Visual

Aircraft ID (e.g., AAR123)

Aircraft type (e.g., B747)

Time prefix, E(fly over), P(departure), or A(arrival)

Time 24 hour format (GMT); (e.g., 1017)

Match indicator field; O-not matched, l-matched. If the green strip
matches the electronic data then set this field to 1, otherwise the default
is 0.

Initials of operator entering green strips (e.g., JLT).

Blank spaces (reserved for fiture use).

4.7.2. Beacon Index File Description
The Beacon index file has the same format as the flight index me (.IDX). The only
difference is the Beacon index file (.BID) is sorted and saved based on the Beacon ID (Field
5, values 0000 through 9999). Because of memory limitations on the PC, it was easier to
process the BID disk file, and plot by Beacon ID, in the PLOTF’LT program. The flight
index file could have been used for plotting but this would require a sort inside of the
PLOTFLT program. Hence, plot speed would have decreased and memory requirements
increased. A sample Beacon ID index file from February 4 is shown in Table 4-2.

29

10
21
7
2

12
15
11
3
1
6

13
20
16
8

14
17
18
9
4

19
5

206
569
164

9
253
349
219
69
1

138
265
561
358
180
315
442
483
194
99

504
131

2189402011010090461101036101126 20 3 0 1 2
5859402011016010461101645101755 50 600 2
1799402011010060473101017101121 77 600 1
689402011010010475101017101458 681210 1

26494020110110005101011541012402602600 1
35794020110130205101013401014122602600 2
2529402011010100741101054101322 651340 1
989402011010020764101017101226 51 650 1

89402011010001200101017101045 53 500 1
163 94020l101005 1200 101017 101208 64 54 0 2
3149402011013001200101312101653 58 550 3
56894020110160013101016351017033883910 1
3929402011013032660101349101621 83 550 1
19394020110100726671010171011131111170 1
34894020110130132411013351016032792600 1
4829402011015004206101507101808 70 562 1
5039402011015014206101507101635120 860 2
2059402011010084234101017101103 95 950 1
1309402011010034240101017101235 791110 1
5239402011015024250101540101703.49 490 1
13794020110100472621010171010402802800 1

Table 4-2. B940201.BID Beacon Index File

4.7.3. Sortflt Report File Description
A report file is generated from the SORTFLT program. It has a .RPT extension.
Pertinent information such as percentage of good flights, duplicate Beacon ID'S, and flight
1200 count are saved. Flight 1200 is usually a unknown or default Beacon ID if the plane
does not have a transponder. In Albuquerque, flight 1200 is also used by small planes and
student pilots. A sample printout is shown below (B940201.RPT).

Input file = b940201.srt
Record count = 600
Scount= 25
PcoUnt = ' 554
EcoUnt= 21
Othcnt= 0
Total flight count = 21
Percent good records = 83.17%
Max distance = 5852.35 Feet
Max velocity = 831.30 MPH
Max distance flight num =
Number of flights which change Beacon IDS during flight = ..

20
1

TOTAL FLIGHT COUNT: 21
Number of flights (unique BID =1>:
Number of flights (non-uniq. BID >l):
Percent of file with unique Beacon IDS: 57.14%
Percent of file with duplicate Beacon IDS: 42.86% ...

12
9

TOTAL FLIGHT COUNT = 21
30

Number of flights with flight count = 1 : 12
Number of flights with flight count = 2 : 6
Number of flights with flight count = 3 : 3
Number of flights with flight count = 4 : 0
Number of flights with flight count = 5 : 0
Number of flights with flight count = 6 : 0
Number of flights with flight count = 7 : 0
Number of flights with flight count = 8 : 0
Number of flights with flight count = 9 : 0
Number of flights with flight count = 10 : 0
Number of flights with flight count > 10 : 0 ...

TOTAL COUNT OF 400 AND 1200 FLIGHT NUMBERS AND PERCENT:
Total count of 400 flight numbers and percent:
Total count of unique 400 flights (unique or = 1):
Total count of duplicate 400 flights (duplicate or >l):

7 33.33%
4 19.05%
2

2

Total count of 1200 flights and percent: 3 14.29% ..

TOTAL COUNT OF FLIGHTS W/O 400/1200 AND PERCENT:
Number of flights with flight count = 1 :
Number of flights with flight count = 2 :
Number of flights with flight count = 3 :
Number of flights with flight count = 4 :
Number of flights with flight count = 5 :
Number of flights with flight count = 6 :
Number of flights with flight count = 7 :
Number of flights with flight count = 8 :
Number of flights with flight count = 9 :
Number of flights with flight count = 10 :
Number of flights with flight count > 10 :

14 66.67%
10
4
0
0
0
0
0
0
0
0
0 ..

Duplicate Beacon IDS
BeaconID Count
461 2
510 2
1200 3
4206 2 ..

*** Records and flight numbers > MACH 3 ***
Record Flight number

31

4.8. Sortflt Include File
All subroutines in SORTFLT (except HIGHLOW) use an include file named
S0RTF'LT.INC. This file defines global parameters, arrays, and record structures. A
listing of the include file follows:

Filename: SORTFLTINC - include file for SORTFLT.FOR

Global variable definitions:

MXRECS - Max number of records in radar file
MAXFLT - Max number of Beacon flights
MAXBID - Max number of unique Beacon ID's (0..9999)
LINE - Array of 49 byte character strings
RADARTYPE - Flag for (B)eacon or (P)rimary radar
zFII;E - Input filename
NRECS - counter for number of records in file
FLIGHT - Array of start/end record structures
FLTCNT - Flight counter (S, P .. P .. P, E sequence)
FLTIDX - Integer array (0-unresolved 1-good flight 2-exceeds MACES)
FLTNUM - Int array which correlates record numbers and fight numbers
TOTFLTCHG - Number of flights which chg Beacon ID within the flight
XVAL - Xvalue array
YVAL - Y value array
BID - Beacon ID array of all records (MXRECS)
BIDARR - Cumulative counter of individual Beacon ID's
DIST - Distance m a y (dist between X, Y points)
VEL - Velocity array
MAXVEL .- Maximum velocity of VEL array
MAXDIST - Maximum distance of DIST array
SCOUNT - Column 13 S counter
PCOUNT - Column 13 P counter
ECOUNT - Column 13 E counter
OTHCNT - Column 13 other counter
FLIGHT - Record structure of flight number, start and end recs.
MAXDISRIW - Record number of max flight distance
MAXDISFLTNUM - Flight number of max flight distance
SWEEPTIME - 1 revolution of radar (4.8 secs)
MACH3DIST - Distance (ft.) traveled at mach 3 (740mph = mach 1)

PARAMETER (SWEEPTIME = 4.8)
PARAMETER (SECPERHR = 3600)
PARAMETER (FTPERMILE = 5280)
PARAMETER (MACHSDIST = 15645.145)
PARAMETER (MXRECS=300000, MAXFLT=20000, MAXBID=9999)

32

CHARACTER LINE*49(MXRECS), RADARTYPE*l, IFIL,E*12
INTEGER NRECS, FLTCNT, IMAXDISREC, MAXDISFLTNUM
INTEGER SCOUNT, PCOUNT, ECOUNT, OTHCNT, TOTFLTCHG
INTEGER*l FLTIDX(MXRECS)
INTEGER FLTNUM(MXRECS)
INTEGER BIDARR(0:MAXBID)
INTEGER BID(MXRECS)
REAL XVAL(MXRECS), YVAL(MXRECS), DIST(MXRECS), VEL(MXRECS)
REAL MAXVEL, MAXDIST

Record structure
STRUCTURE /IDX-FILE/

INTEGER FLTNUM
INTEGER SREC
INTEGER EREC
CHARACTER PRLKEY"12
CHARACTER BEACON*4
CHARACTER STHR*2
CHARACTER STMIN*2
CHARACTER STSEC*2
CHARACTER ENDHR*2
CHARACTER ENDMIN*2
CHARACTER ENDSEC*2
CHARACTER STELEV*3
CHARACTER ENDELEV*3
INTEGER*l FLTIND
INTEGER BIDSEQ
INTEGER BJDCNT

END STRUCTURE

! Flight number (sequential)
! Start of flight record number
! End of flight record number
! Primary key LINE(1:12)
! Beacon ID
! Start hour
! Start minute
! Start second
! End hour
! End minute
! End second
! Start elevation
! End elevation
! Flight indicator field
! Beacon ID sequence
! Beacon ID count

Declare an array of dight structures
RECORD /IDX-FILE/ FLIGHT(MAXFZT)

Common
COMMON /zONE4/ NRECS, FLTCNT, SCOUNT, PCOUNT, ECOUNT, OTHCNT,
* TOTFLTCHG
COMMON FLTIDX, FLTNUM, LINE, RADARTYPE, IFILE, XVAL, WAL, DIST, *
* MAXDISFLTNUM, BIDARR, BID

VEL, MAXVEL, MAXDIST, FLIGHT, MAXDISREC,

33

4.9. Sortflt Calling Sequence

Seven subroutines are called in SORTFLT. A brief description of each routine folIows:

RW-FILE - Read input file &om command line; populate global arrays
SPE-COUNT - Sum all S, P ,E characters in column 13
SORT-FLIGHT - Separated good data &om incomplete data
DIST_VEL - Calculate max distance and max velocity between data points
WRITE-F'LTNDX - Write flight index file (.IDX)
GEN-REPORT - Generate report me (.RPT)
SORT2 - Sort and generate Beacon ID index .file (.BID)

All routines are called fiom the main program. The calling sequence follows:

Read input file
CALL R;EAD-FILE

Do sanity checks
CALL COUNT-SPE

Separate the good flights &om the unresolved flights
CALL SORT-FLIGHT

Calculate distance and velocity between points
CALL DIST-VEL

Write out start and end pts. of complete flights (.IDX)
CALL WRIm-FLTNDX

Generate report file (.RPT)
CALL GEN-REPORT

Sort data based on Beacon ID and write .BID file
CALL SORT2

Upon completion of the program, the following confirmation message will appear:
OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX
WRITING REPORT FILE: B940201.RPT
WRITING INDEX FILE: B940201.BID

34

4.1 0. Sortflt Subroutine Description
SUBROUTINE R;EAD_FII;E
Function name: R;EAD_FILE
Purpose:
This routine reads the input file fiom the command line
and populates the global arrays.

Parametersi none
Sample call: CALL READ-FILE
Calls routine: none
Called &om: main program
Return value: none
Globals modified RADARTYPE, IFILX, LINE, XVAL, YVAL, BID

FLTIDX, FLTNUlM, DIST, VEL, NRECS, BIDARR

Messages returned

If the input file, IFILE, is not present on the command line, then the following message
will appear:

*** PLEASE ENTER FJIJZNAME ON COMMAND LINE ***
SYNTm SORTFLT [filename]
e.g., SORTFLT B950112.SRT

The first character in the input file must be an ‘R’, ‘r’, ’B’’ or ‘by. If not, the next message
will appear:

First character in B940201.SRT must be B or R

If the input file does not exist, or if an invalid name is entered, then the next message will
appear:

File B940201.SRT not found

If the read statement f k d invalid values for XVAL or YVAL , the next message will
appear:

Invalid record found -> record # 1016

35

--

SUBROUTINE COUNT-SPE
Function name: COUNT-SPE
Purpose: Counts the S, P, and E characters in column 13
Parameters: none
Sample call: CALL COUNT-SPE
Calls routine: none
Called from: main program
Return value: none

Globals modified: SCOUNT, PCOUNT, ECOUNT, OTHCNT

S - start of flight
P - continuation point of flight
E - end of flight

If an illegal character or missing character is found in column 13, then the following
message will appear:

Bogus data found at line 1227

SUBROUTINE SORT-F'LIGHT
Function name: SORT-FLIGHT
Purpose:

This routine checks for the sequence of S, P..P..P, E for
a complete flight. The flight counter FLTCNT is incremented
if we complete a sequence.

Parameters: none
Sample call: C U SORT-FLIGHT
Calls routine: none
Called from: main program
Return value: none
Globals mod5ed FLIGHT, FLTIDX, FLTNUM, BIDARR

Messages returned none

36

SUBROUTINE DIST-VEL
Function name: DIST-VEL
Purpose:
This routine calculates the maximum distance and the maximum
velocity between points.

Parameters: none
Sample calk. CALL DIST-VEL
Calls routine: none
Called fkom: main program
Return value: none
Globals modified: IMAXDIST, MAXDISTREC, MAXVEL

SUBROUTINE WRITE-EZTNDX
Function name: WRITE-FLTNDX
Purpose:
This routine writes out the flight number, start, and end
records for the valid flights. The output index file is
created with a .IDX extension

Parameters: none
Sample calk CALL WRITE_FLTNDX
Calls routine: none
Called &om: main program
Return value: none
Globals modified: MAXDISFLTNUM

Messages returned

OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX

37

SUBROUTINE GEN-REPORT
Function name: GEN-REPORT
Purpose:

This routine writes out important parameters including:
record count, S, P, and E count and the flight count
The output file is created with a .RPT extension.

Parameters:. none
Sample calk CALL GEN-REPORT
Calls routine: none
Called &om: main program
Return value: none
Globals modified none

Messages returned:

WRITING mPORT FILE: B940201.RPT

SUBROUTINE SORT2
Function name: SORT2
Purpose:

This routine does a modified shell sort using 3 keys:
The primary key is the Beacon ID (42:45)
the 2nd is the date/time stamp (192) and
the 3rd is the flight time column (1520)
A index array (INDX) is used for sorting.
Once sorted, the output file is written with a .BID extension
The sorting algorithm was obtained fkom Bob Roginski, 12333

Parameters: none
Sample call: CALL SORT2
Calls routine: none
Called &om: main program
Return value: none
Globals modified none

This routine uses the flight index file for sorting (.IDX) and writes out a new Beacon index
file (.BID). If the .IDX is deleted or missing, then the following message will appear:

File B940201.IDX not found

After the sort is finished, the following message will appear:

WRITING INDEX FILE: B940201.BID

38

SUBROUTINE HIGHLOW (AR.RAY, START, END, HIGH, LOW, AVG)
Function name: HIGHLOW
Purpose:
This routine does basic statistics given an real array.
The routine calculates the high, low and average values
of a given range in a array. This routine was obtained
fiom the Numerical Recipes book.

START - start point in array
END - end point of array
HIGH - highest value (returned)
LOW - lowest value (returned)
AVG - average value of range (returned).

CALL HIGHLOW (DIST, SREC, E-C, MAX, MIN, AVG)

Parameters: ARRAY - real array

Sample call:

Calls routine: none
Called &om: WRITE_FLTNDX
Return value: none
Globals modified: none

Messages returned:

If the starting record in the array is 0, the following message wi l l be displayed:
Start value = 0 in HIGHLOW routine

39

Intentionally Left Blank

40

5. Aircraft Viewing Software

5.1. Plotflt Software Description
Filename: PL0TFLT.C

Function:
Plotflt is a DOS based plot program that allows analysts to replay recorded air traffic.
This program permits replay of daily flights sequentially, by range, or by Beacon ID.

The plotflt program also allows users to attach green strips (&om the local air traffic
center) t o the recorded electronic flight data.

Compile instructions: comp.bat (uses Turbo C++ 3.0 compiler)
Manual compile: tcc -ml p1otflt.c graphics.lib

note: the tc\bin directory must be in the path

File dependencies: The PL0TFLT.H include fTle is required.

Command line execution instructions: plotflt mename (e.g. plotflt B940429.SRT)

Background:
This program was adapted fkom the RAMS program chektrak which was written by David
Skogmo, 12/5/93.

Required input files:
P S W . C F G
PSW.MAP
P S W . T x T
EGAVGABGI - Borland graphics driver
ABQPTX.CFG
BYYMMDD.SRT - Sorted radar file
BYYMMDD.IDX - Flight index file
BYYMMDD.BID - Beacon index file

- Contains maximum radius for display
- Graphics f le for local airport and streets
- Text file for labels

- Configuration file for data input mode

41

5.2. Main Program Description
The plotflt program consists of one main program and forty functions. The main program
reads parameters (e.g. map coordinates) &om configuration files and opens the radar files
for viewing. The main program controls selection of both display and data input modes.
Figure 5-1 shows the process.

v *

files, read sorted
radar file

w

If plot review,
open index files . open display
display plot

If composite mode,

plot all data points

If data input,
open index files
enter green strips

Finish a
Figure 5-1. Main Program Diagram

5.3. Main Program Calling Sequence
The main program controls calling sequence for entire program. First, the abqptxcfg
function is called to set up site spec5c parameters for Albuquerque and Amarillo. Next
the open-radarfile is called; a valid .SRT file is expected. Select-mode is called next: the
user selects plot display, plot composite, or data input mode. I€ plot display or data input
mode are selected, then the user can change default plot options (i.e., plot speed). Next,
the bid array, G-bid, is populated with Beacon ID integers from the Beacon ID file. This
array is used to check if valid Beacon ID'S are entered during plotting or data entry. A
check is made to make sure we don't exceed the maximum number of flights per file. A
limit was set because of memory concerns in DOS. Finally, depending on the mode
selected, main will branch to display-plot, safescrt, or the input-data function. A diagram
showing the calling sequence and pseudo code follows.

abqptxcfg0; ! Get Albuquerque and Amarillo data input parameters

open_radarfile(); ! Open sorted radar f le

select-mode(); ! Review, composite, or data input mode

If mode = review or data inmt then

end if
s elect-plot-opt (); ! Select plot options

p op-bid-arr 0; ! Populate the bid array and calculate filesize

Ifmode = review then
open_idxfiles("rb"); ! Open index files read only
display-plot() ;

safescrt(); ! Display screen
trkplot();
closegraph(); ! Close graphics screen

open_idxfiles("r+b"); ! Open files for update
input-dat a();

else ifmode = composite then

! Plot all flight paths

else if mode = data input then

! Input green strip parameters
end if

end of main

Messages Returned:
If the maximum number of flights for a given day is exceeded, the following message will
appear on the screen:
Max flights 2005 is greater than 2000.
Contact system personnel.

43

The maximum number of flights is currently set to 2000. This value is named MAXFLT
and is defined in the include file PL0TF’LT.H. This value has never been exceeded after
processing two years of data at the Albuquerque airport.

5.4. Plot Display Mode

5.4.1. Oveniiew
Plot display mode permits a user to view aircraft trajectories for a given day. The flights
can be viewed sequentidly (as they occurred during the day) or by Beacon ID. The flights
are plotted on a VGA compatible screen as a series of dots. The plot speed is controlled by
the user upon startup. Multiple flights can be displayed on the same screen. An sample
plot is shown in Figure 5-2.

Figure 5-2. Sample Plot Using Dipplay Mode.

This is a fly-over flight in Albuquerque on February lst, 1994. The flight direction is fkom
east to west. In Figure 5-2, the text in the left column represents the following
idormation: B940201.SRT is the name of the radar file; ‘Enter’ for next will allow the
user to view the next sequential flight in the file; ‘q’ will exit display mode; Flight #: 14
shows that this flight was the 14th flight of February 1st; 940201 10:16:03 represents the
YYMMDD and the HH:MM:SS of the last plotted point of the flight; BEACON DATA
3241/260,3241 is the squawk code or Beacon ID of the transponder and 260 is the

44

elevation times 100 (e.g. 26000 feet) of the latest plotted point; PLANE DETECTED
940201 10:13:35 is the YYMMDD and HH:MM:SS of the start of the flight; COVERAGE
LOST 940201 10:16:21 is the YYMMDD and HN:MM:SS of the last point in the flight
data. The trkplot function is used t o plot the data points and the background display.

Select plot
options
(select-plot)

5.4.2. Plot Display Process
Figure 5-3 shows process flow and pseudo code for plot display mode. The function names
are listed in ().

If Beacon Search BID
,ID selected +table

(table-search)

Istaxt of I

Display
background
(safescrt)

Get site Read

(get cfg) (readlin)
,configuration ' parameters

trajectorg
(trkplot)

Draw character Plot a dot
'string (xstrz) ' (xordot)

A

Figure 5-3. Display Mode Process Diagram

In Figure 5-3, the display-plot function is called &om the main program. The select-plot
function is called next. This option determines whether the user will select the flight
based on Beacon ID, by a specific flight number, or sequentially. If the mode selected is
Beacon ID, the BID array is searched for the entered BID. If a match is found, an offset is
calculated for the radar me and the corresponding record is read fiom the radar file
(.SRT). A pointer is positioned at the specific flight number and the points are plotted on

45

the screen. All Beacon numbers are plotted for the given flight. For example, if the user
enters BID 4333, and if four flights are tagged with Beacon 4333 in the data file, then all
four trajectories will plot on the screen sequentially. If the Beacon number is not found,
the user is given another opportunity to enter a valid integer or quit.

If the mode selected is flight number or sequential, then the index file is positioned at the
proper flight number. The record number, start, and end points of the flight is contained
in the first three fields of the flight index file (.IDX). These fields are used as an index
into the sorted radar file. The flight is plotted from the radar file beginning at the start
point.

5.5. Data Input Mode

5.5.1. Overview
Data input mode permits users to attach air traffic control strips (see Figure 3-2) to
electronic radar data. The green strips contain information (e.g., aircraft type and id) that
is not captured or not available in electronic form. The aircraft type and related
information is required for the current models used in aircraft crash analysis. Further
information is contained in [Ref. 21.

Figure 5-4 shows the data input process. The functions are listed with (). The functions
get-.-* and get-acft-id are bypassed if the switches are turned off in the ABQPTX.CFG
file. This'file is read upon startup; it is used to configure the data input environment. It
was determined that the vFR/IFR and aircraft ID were not as important as the other
variables listed on the green strips.

The process begins by asking the user a series of questions related to the flight strip. The
time of flight, Beacon ID, and aircraft type are all captured. The entered Beacon ID is
checked against the BID array to see if there is a match. If a match is not found, the
entered data is saved to an unresolved file. If a match is found, all of the BIDS are plotted
on the screen. At this point, the user is prompted to select which flight matches closely to
the electronic data. At this time, this process is a visual comparison. If a selection is
made, then the BID ihdex file is updated with the green strip information. If the user
chooses not to attach the flight strip to the data, the data is saved to an unresolved file.

46

5.5.2. Data Input Process

Is green strip
already
entered?

BID found? Is BID and data
(read-bid-file) correct?
(table-search) (display-indata)

Is data different? No Compare data wl

strip data, print
yes existing green b

IWrite data to 1

No

Tunresolved file
yes (write-unr-data)

msg. (upd-bid-ae)
Yes

Display all BID
wl trajectories,
elev., time,
flightnumbers
(plo tbids)

flight numbers?

Yes
Print msg., enter flight
numbers to match with
green strip data
(g&flt-n-)

.I

UpdateBIDfile .
(RAN_wRITE) .

Want to attach
green strip to , No

47

Write g.s. data t o
,unresolved file

Enter flight Write green strip
,numbers, QA chk ,infotoBIDfde -
(Chk-plt-num) W-WRIrn)

. . I-

5.6. Plotflt Include File
The plotflt program uses one include file named p1otflt.h. This file contains the global
variables, defkitions, and function prototypes for the plotflt program. A listing follows:

/* p1otflt.h - include file for p1otflt.c */

/* include files */
#include cdos.h>
#include <graphics.h>
#include cmath.h>
#include <stdio.h>
#include <bios.h>
#include ctime.h>
#include cstdlib.h>
#include 4 o . b
#include cstring.h>
#include <conio.h>
#include <dir.h>
#include <ctype.h>
#include <malloc.h>
#include <sys\stat.h>

/* defines */
#define fpm 5280.
#define bkgd BLACK
#define btc YELLOW
#define r t c WHITE
#define btx btcAbkgd
#define rtx rtc"bkgd
#define W L T 2000
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0
#define IDXBYTES 140L
#define BIDBYTES 140L
#define RADBYTES 51L
#define MAXBYTES 256

#define BELL 7
#define EMFIXSTRING ''''

#define STARS fW**********"

/* feet per mile */
/* color for map background */
/* color for beacon track */
/* color for radar track */
/* xor mode color to yield btc over bkgd. color */
/* xor mode color to yield rtc over bkgd. color */
/* max number of recorded flights per day */

/* length of .IDX file in bytes */
/* length of .BID file in bytes */
/* length of raw radar file in bytes */

#dehe MAXPL-%WM 100
#define MAXENTRIES 30
#define BLANK '
#define F'JX-RADAR-ELEX 3500L
#define ABQRADARELEV 5000L

/* max nm,er of plots viewed on screen */
/* max number of attached flight numbers */

/* Amarillo radar elevation in feet */
/* Albuquerque radar elevation in feet */

48

/* plot speed codes in milliseconds */
#define DELAY-FAST OL
#define DELAY-&IED 50L
#define DELAY-SLOW lOOL
#define SLEEP-FAST OL
#define SLEEP-MED 1L
#define SLEEP-SLOW 2L

/* return error codes */
#define ZERO-LENGTH-STR -1
#define NO-ERROR 0
#define NO_RADAR_FILE 1
#define BID-NW-ERROR 2
#define SCANFERR 3

5.7. Plotflt Function Descriptions
The plotflt program contains forty functions. They can be logically grouped into five
categories. These are:

MAIN - functions called exclusively &om the main program
PLOT DISPLAY - display mode only functions
DATA INPUT - data input functions
PLOT DISPLAY and DATA INPUT - functions contained in both plot and data input
GENERAL PURPOSE - functions that can be used in other programs

The functions are categorized below. The functions prototypes and a brief description of
each routine is listed.

Main functions
void abqptxcfg(v0id);
int open-radarfile(int numargs);
void open-idx-files(char finoden);
long pop-bid-=(void);
int select-mode(void);
void select-plot-opt(void);

/* Read Albuquerque, Amarillo c o d g file */
/* Open radar file */
/* Open idx file */
/* Populate the Beacon ID array */
/* Select plot mode */
/* Select plot options */

Plot display functions
void display-plot(void);
int select-plot(void);

/* Main function for plot display mode */
/* Select plot options */

Data input functions
void input-data(void); /* Main function for data input mode */

/* Check for valid plot number */
int chk-plt-num(int pltsequ, int intbufcl, int recarru, int bidrecsave);
int display-indataboid); /* Display input data */
void get-acft_id(void); /* Get aircraft id */
void get-acfi-me(void); /* Get aircraft type */
void get_hhmm(void); /* Get time */
int get-v-k5(void); /* Get vfr or if? response */
int get-flt-num(int bidrec); /* Get flight number */
void plotbiddint bidrec); /* Plot by Beacon ID */
void read-bid-file(long bidloc); /* Read Beacon file */
int readinpfile(void); /* Read input file */
int setupgs(v0id); /* Setup green strip entry */
int upd-bid-file(int recarrn, int scanfcnt); /* Update BID file */
void writeunr-data(void); /* Write data to unresolved fXe */

Plot displav and data input functions
/* Adjust slant range of Abq data */

void abqadjust(doub1e xf, double yf, double *newxf, double "newyf, long elev);
void getcfgivoid); /* Read global params ikom psmap.cfg */

/* Adjust slant range of Pantex data */
void ptxadjust(doub1e xF, double yf, double *ne&, double * n e e , long elev);
void safescrt(void); /* Prepare screen and get run parameters */
void trkplot (int fltnum); /* Plot a radar track */
void xstrz (char *strg, int x, int y, int color); /* Low level plot routine */
void xordot (int XX, int xy, int xcol); /* Low level plot routine */

General m q ose functions
/* Update a string */

/* Direct access read */

/* Direct access write */

/* Read a line into a buffer */
/* Get file size in bytes */
/* Search BID array */

/* General purpose reply function */
/* Extract middle of string */

/* Character counter */
/* Squeeze c from string s */

int STRUPD(char sourcen, char replace[], int start);

int RAN - READ(FILE *stream, long recnum, long bytes, char stringn);

int RAN-WEtPI'E(FIUE *stream, long recnum, long bytes, char stringu);
int readlin (char buf'U, FILE * s trm);
long Hesize (FILE "stream);
int table-search(int an, int n, int target);
int get-int(char *prompt, int min, int max); /* Get integer */
int get-reply(char *prompt>;

int mid-extzact(char *src, char *dest, int start, int num-chars);
int charcount(char *string, char letter);
void squeeze(char so, int c);

50

5.7.1. Main Function Headers

Purpose:
Get the Albuquerque and Amarillo site configuration. This routine opens up the
ABQPTX.CFG file and checks ifthe global flags for VFR/IFR and ACFT ID are set - if set
to 1 the question(s) the user is prompted for a response if set t o 0, the questions are
bypassed.

The global variables G_vfiifr, G-acid, and G-miles are set in this routine. G-miles is an
integer which is used to eliminate flights outside this radius. This assumes that this
option is enabled in SORTFLT.FOR.

Called from: main

Calls routines: None

Sample call: abqptxcfgo;

Return value: None

Messages returned
If the ABQPTX.CFG cannot be opened, the following message will appear:

Cannot open ABQPTX.CFG file.

Purpose:
Make sure we have a valid Beacon input file. The me name must start with a "b" or a "Bl'
axld the file extension should be .SRT

Called from: main

Calls routines: None

Sample calk rtnerr = open-radarfile(numargs);

Return value: integer representing one of the following conditions:
-> no radar file present or invalid extension NO-FLADAR-FILE

BIDNAMEERROR -> f le cannot be opened; 1st character must be B
NO-ERROR -> successful open

51

Messages returned
If an invalid extension is used for a filename (other than SRT) the
following message will appear:
Please use .SRT extension for filename.
Enter name of the radar file for plotting (e.g., B940508N.SRT): .

If the input file name does not exist or cannot be opened, the next
message will appear on the screen:
F m NAME = B940521.SRT
CANNOT OPEN FILE.

E the first character in the filename is not a b or a By then next
message will appear:
File name W940521.SRT must be a Beacon file.
The first character in the filename must be b or B.

...
Function name: open-idxfiles

Purpose:
Open the .IDX and .BID files. The filenames are constructed fkom the G-trkname
filename.

Called fiom: main

Calls routines: None

Sample calk open_idxfiles("rb");

Return value: None

Messages returned
If an error occurs opening the flight index file, the following
message will appear:
Inside open-idxfiles module.
Error opening flight index file: B950521.IDX

If an error occurs opening the BID file, the following message wi l l
appear:
Inside open-idxfiles module.
Error opening BID index file: B950521.BID

52

Purpose:
Populates the global Beacon ID array, G-bid. The .BID He is read sequentially and the
5th field is saved into the array. The .BID file is assumed sorted. This function also
calculates the byte count of the .BID file

Called $om: main

Calls routines: filesize

Definitions: MAXBYTES

Sample call: bytecnt = pop_bid-arr();

Return value: Long value which is the byte count of the BID file.

Messages returned:
Inside pop-bid-arr module.
Error opening sorted index file: B950521.BID

Purpose:
Select plot review, composite, or data input mode.

Called from: main

Calls routines: None

Sample call: choice = select-mode();

Return value: Integer value representing the following values:
0 -> Quit program
1 -> Plot Review mode
2 -> Plot Composite mode
3 -> Data Input mode

Messages returned None

...

53

...
Function name: select-plot-opt

Purpose:
Routine which allows user to change plot parameters and set up plot defaults for text,
streets, and radii. If erase mode is turned on, the plot will erase the previous flight before
it plots the next one. If erase mode is off, all flights will plot on the screen one at time.

Called fkom: main

Calls routines: None

Sample call: select-plot-opt();

Return value: None

Messages returned: None

5.7.2. Plot Display Function Headers

...
Function name: display-plot

Purpose:
Allow the user to select a flight nunbeds) or BID to plot; select-plot is called first. Ea
flight number is input, the start point of the flight is computed for the index f?le (.IDX).
The start point is used to fseek into the index file at the correct position. The index file is
read and the record number for the specific flight (flight number, start and end pts.) are
read into memory. These values are used to locate the proper flight to plot from the radar
He. If a BID plot is chosen, then table-search is called to make sure the BID number is
found. If found, then the start point is computed and the BID file (.BID) is used t o locate
the flight. A replay option is available after the points are plotted. The trkplot function is
called to plot the points.

Called fkom: main

Calls routines:
select-plot ixkplot
table-search safiescrt

Sample call: display-plot();

Return value: None

54

Messages returned: None

Purpose:
Select the flight numbers or Beacon ID for plotting.

Called from: display-plot

Calls routines: None

Sample call: choice = select-plot();

Return value: Integer value representing the following:
0 -> Quit program
1 -> Plot all flights sequentially
2 -> Plot a specific flight
3 -> Plot a range of flights
4 -> Plot by Beacon ID

Messages returned: None

...

5.7.3. Data Input Function Headers

..
Function name: input-data

Purpose:
This is the main routine for green strip input. The 1st routine called is setupgs which
captures the initials of the user. A welcome message is printed and the following routines
are called in sequence:
get-vfi-jfk - determine VE'R or IFR flight
get-int - get Beacon ID

A check is made to see if the flight is within the radius specified in the abqptxsfg. This
global variable is named G-miles. Flights outside this range are ignored. This value is
currently set t o 0, which means no flights are ignored.

55

Next the aircraft id, aircraft type, and the time is captured from the green strip. These
routines are named
get-ace-id - get aircraft id
get-ace-type - get aircraft type
get-hhmm - get hours and minutes of flight

The table-search function is called next. If the Beacon number is found a plot is initiated
(plotbids). If not found, the user has the option of changing the green strip information or
saving the idormation to the unresolved file. In this case, the unresolved path is set to 1.

Batch mode is available but should not be used because it has been superseded with a
electronic regional strip match utility. This new program negates the use of batch mode.

Called from: main

Calls routines:
setupgs
readinpme
get-*-*
read-bid-file
mid-extract
get-a&-id
get--
write-unr-data

readlin
table-search
get-int
RAN_READ
get-flt-num
get-acft_type
plotbids
display-indat a

Sample calk input-data();

Return value: None

Messages returned:
If the Beacon ID is not found in the file, the following message
will appear:
BEACON ID 3271 NOT FOUND. Press return:

If the maximum number of flights that can be displayed on the
screen is exceeded, the following message will appear:
A total of 120 BIDS found. This exceeds the maximum
number of flights for plotting. No more than 100
flights can be viewed at one time.

56

Purpose:
This routine checks for valid flight numbers. Positive numbers are allowed. Plot number
0 is illegal. The entries must match the displayed flight numbers. The number of entries
is returned..

Called eom: get-flt-num

Calls routines: char-count

Sample call: scanfcnt = chkplt-num(pltseq, intbuf, recarr, bidrecsave);
Return value: Integer value which is number of entries read.

Messages returned:
If the number of entries is not between 1 and 30, the next
message will appear:
You must enter between 1 and 30 digits.

If an invalid digit is typed in, the following message will appear:
Error reading input: enter digits only.

If the number of entries exceed the BID count, the next message
will appear:
You entered more plot numbers than expected. Try again.

If negative numbers are entered, the following message will appear:
Enter positive numbers only. Please try again.

If plot number 0 is entered, the next message wi l l appear:
You cannot enter plot number 0. Try again.

If the entered number does not match the flight numbers, the
next message will appear:
Your selection(s) do not match the plot numbers. Try again.

Purpose:
Prints a confinnation screen after green strip information is entered; allows user to
change all the data or none.

57

Called firom: input-data

Calls routines: getreply

Sample call: rtnval = display-indata();

Return value: Integer value
0 -> NO
1 -> Yes

Messages returned: None

...

..
Function name: get-acft-id

Purpose:
Prompt for the aircraft ID (e.g., N321FM). This prompt can be bypassed by setting the
aircrafk id variable to 0 in the ABQPTX.CFG file. Enter 12 characters maximum.

Called fiom: input-data

Calls routines: None

Sample call: get-acfi-ido;

Return value: None

Messages returned
If the aircraft ID is left blank, the following message will appear:
You must enter the aircraft ID. Please re-enter.

If the length of the aircraft ID exceeds 12 characters, the following
message will appear:
You have exceeded 12 characters. Please re-enter.

...

...
Function name: get-acft-type

Purpose:
Get the aircrdt type (e.g. T/B73S/A). Enter 12 characters max.

Called firom: input-data
58

Calls routines: None

Sample call: get-acft-type();

Return value: None

Messages returned
If the aircraft type is left blank, the following message wil l appear:
You must enter the aircraft type. Please re-enter.

If the length of the aircraft type exceeds 12 characters, the following
message will appear:
You have exceeded 12 characters. Please re-enter.

...

Purpose:
Get the hours and minutes fkom the green strip. Time must be in HHMM format. A
minimum of four digits are required. If a leading prefix is used it must be "A" for arrival;
"Ptt for departure; or "E" for fly over. HH must be in the range 00->23; MM must be in the
range 00-959.

Called fkom: input-data

Calls routines: None

Sample call: get-hhmm0;

Return value: None

Messages returned
If the flight time is left blank, the following message will appear:
You must enter the aircraft flight time. Please re-enter.

If the time is less than 4 digits, the following message wi l l appear:
Time too short; Use 4 digits minimum. Please re-enter.

If more than 5 digits are entered, the next message will appear:
Time too long; Use 5 characters max. Please re-enter.

If an invalid prefix is entered, the next message will appear:
Prefix must be A, E, or P. Please reenter.

59

If a negative number is entered, the next message will appear:
Please use valid positive digits for time. Please re-enter.

If the hour is not between 00 and 23, the next message will appear:
Hour is invalid Use 00 to 23 for hour.

If the minute is not between 00 and 59, the next message will appear:
Minute is invalid: Use 00 to 59 for minute.

...

...
Function name: get-vkifk

Purpose:
Determine if this is a VFR, IFR, or unknown flight strip.

Called from: input-data

Calls routines: None

Sample call: rtnval= get-*-*();

Return value: Integer value 0,1,2, or 3
0 -> Quit data entry
1 -> IFR
2 ->m
3 -> UNKNOWN

Messages returned None

...
Function name: get-flt-num

Purpose:
The is a text mode version of plotbids without the graphics. The user is given options for
attaching the green strips t o the electronic flight data. "he options are:

1. Quit
2. Attach green s t i p to flight numbers - the flight

numbers are check and the Beacon file is updated
chk-plt-num and upd-bid-file are called

3. Write green s t i p info to unresolved fYe
60

the unresolved file is updated with path=2
write-unr-data is called

4. Replay the plot

Like the plotbids function, if the BID changes during flight or if the flight is already
attached the flight will display in yellow.

Called from: input-data

Calls routines:
RAN-READ
chkpl t-num
write-unr-data

mid-extract
upd-bid-file

Sample call: rtnval = get-fLt-num(found);

Return value: Integer
0 -> Quit, restart green strip input
1 -> Attach green strips t o plot numbers
2 -> Write green strip information to unresolved file
3 -> Replay plot

Messages returned: None

...

Function name: plotbids

Purpose:
Plot a flight track fiom the Beacon radar file. This routine Calls routines safescrt which
toggles the text screen t o graphics mode and sets up the screen colors. The scale factor for
the plot is calculated from the global variable
G-maxrg. This variable is site specific.

A nested loop is started to plot the actual track. The G-bidcnt variable contains the total
number of Beacon tracks found. This sets the limit on the number of flights plotted. The
Beacon index file for the Beacon ID specified and the flight number, start and end times,
start and end elevations are printed on the plot. Ifthe flight is already attached to a
green strip, the color is displayed as yellow for that fiight. If the fltind variable is 2 or
greater, then a * will be plotted next to the flight. This shows that the Beacon ID changed
during flight or it may have changed multiple times.

The inner loop plots a data point fiom the radar file. The px and py are calculated in
pixels and plotted. Adjustments are made t o the x and y coordinates to account for the

61

slant range of the track. The abqadjust and ptxadjust routines convert slant range t o
projected ground coordinates.

Called from: input-data

Calls routines:
safescrt . RAN-READ
ptxadjust abqadjust
mid-extract

Sample call: plotbids(bidrec);

Return value: None

Messages returned None

...

...
Function name: readinpfile

Purpose:
This routine is used exclusively for batch mode only. The response file is read and the
global variables for Beacon ID, aircraft, ID, aircraft type, and time are populated. Five
fields must be present or an error message wil l print out.

Called &om: input-data

Calls routines: rea&

Sample calk rtnval = readinpiileo;

Return value: Integer value
SCANFERR -> invalid field count
1 -> success

Messages returned:
If an invalid field is found in the response file, the following
message wi l l appear:
Illegal record found in batch file B950521.RES

...

62

Purpose:
Setup routine for green strip input; capture the initials for the data entry person. The
initials are used to update the BID index file. This routine is called only once upon start
UP.

The bulk of this routine is programmed for batch mode which is obsolete. Batch mode will
use a response file which contains data like aircraft type and time. The sequence file is
used as an integer counter to keep track of which records in the response file have been
plotted. This permits Called from to stop and start the program gracefully.

Called fkom: input-data

Calls routines: None

Sample call: rtnval = setupgso;

Return value: Integer value
1 -> Data eom keyboard
2 -> Data from batch file

Messages returned:
If the response file (.RES) cannot be opened, the following message
will appear:
Inside setupgs module.
Error opening input file B950521.RES

If there is an error creating the sequence file, the following
message will appear:
Inside setupgs module.
Error creating sequence file B950521.SEQ

If there is an error opening the sequence file, the following
message wi l l appear:
Inside setupgs module.
Error opening sequence file B950521.SEQ

...

63

..
Function name: read-bid-file

. Purpose:
Read a line fiom the BID file; input the location and update the BID count for the given
flight.

Called .from: input-data

Calls routines:
RAN_READ mid-extrac t

Sample call: read-bid-file(loc);

Return value: None

Messages returned: None ...

Function name: upd-bid-file
.

Purpose:
Update the Beacon ID file with the green strip green strip information. The existing
information is read &om the BID file. If the record has not been updated (matchind = 0),
then update the WRLWR, aircraft id, aircraft type, and time for the current record. If the
record has been updated already then compare the aircraft id, type, and time .from the old
to the new. If there are differences then allow the user to save the old stuff or overwrite it
with the new information. If the user decides not to overwrite, then an option is available
to save the green strip information to the unresolved file with path=3.

Called from: get-flt-&m

Calls routines:
RAN_READ mid-extract
squeeze STRUPD
RAN-WRIrn write-unr-data

Sample call: rtnval= upd-bid-file(recarr, scanfcnt);

Return value: Integer value
0 -> success
1 -> Replay plot and re-enter flight numbers

Messages returned None

64

.

Purpose:
Writes green strip information to unresolved file.

Called fiom:
input-data
upd-bid-file

get-flt-num

Calls routines: None

Sample calk write-um-data();

Return value: None

Messages returned
If the unresolved file cannot be opened, the following message
will appear:
Error opening unresolved file : B950521.W

...

Purpose:
Plot adjust routine for Albuquerque data; convert the x and y slant range back to projected
ground coordinates. No offset is necessary because the radar antenna is the 0,O reference
point for all the raw data.

Called Erom:
trkplot plotbids

Calls routines: None

Sample calk abqadjust(xf, yf, &newx€, & n e e , elev);

Return value: None

Messages returned: None

65

...

/*FF**~************************
Function name: getcfg

Purpose:
Written by David Skogmo 4/5/91
adapted to read both Pantex and Albuquerque P S W . C F G files: J. Tenney 2/14/95

getcfg reads the file PSMAP.CFG and loads the site specific data into the SARS program
global variables. The first five lines of the PSW.CFG file should look as shown below.
It is essential that the items be in exactly this order and that all data entries be separated
from any annotation by whitespace. All lines should terminate in \n. This is certainly true
also of the last line.

0.00 ;xd=east/west coordinate in statute miles from radar
0.00 ;yd=north/south coordinate in statute miles from radar
196.8 ;rcell=beacon range cell size in feet
196.8 ;rrcell=primary range cell size in feet
11.52 ;G-maxrg=coverage radius in miles

Called fkom: safescrt

Calls routines: None

Sample calk getcfg0;

Return value: None

Messages returned
If the P S W . C F G fXe does not exist, the next message will appear:
Trouble with P S a . C F G file. Fatal error. Press any key.

.

...
Function name: ptxadjust

Purpose:
Plot adjust routine for Pantex site. This routine converts the recorded slant range back t o
ground coordinates. The offset of x=38280 feet, y=38174 feet is used because these offsets
are embedded in the recorded data. The radar antenna location is different fkom the Zone
4 recording site. The raw data is tracked from the Zone 4 coordinate. Therefore the offset
must be applied to the data in order to calculate the correct position of the flight projection
to the surface.

66

Called fkom: trkplot plotbids

Calls routines: None

Sample call: ptxadjust(rrf,yf&newxf,&newyf,elev);

Return value: None

Messages returned: None

...
Function name: safescrt

Purpose:
Written by David Skogmo 3/20/91; adapted fkom autoscrn for zone4 program

safescrt prepares screen for RAMS display. It reads the site specific parameters f?om a Ele
called PSMAPEFG. It displays a map and its associated text file. The map file is expected
t o be a list of points (one point per line). Each line gives the x and y coordinates and the
color. These numbers are separated by spaces. To make a black dot at 230,335; enter 230
335 0 etc. The text file should give the x and y coordinates then the color. This is followed
by the text string to be placed at x,y. Since we use the function sscanf to read this string,
it should contain no spaces. If you need a space, use the underline - char. The map file
should be named PSMAP.MAP and the text file should be named PSMAl?.Txrr.

Called from: main display-plot plotbids

Calls routines: getcfg

Definitions: bkgd

Sample call: safescrt();

Return value: None

Messages returned
If the PSMAP.MAp file does not exist in the local directory, the
following message will appear on the screen:
Cannot open PSMAP.MAP .file. Press any key.

If the PSMAP.TXT file does not exist in the local directory, the
following message will appear on the screen:

Cannot open PAMAP.TXT file. Press any key. ...
67

-_ ._&_I_-

. . ..
Function name: trkplot

Purpose:
Plots a flight of data points one point at a time. The data is read &om the Beacon radar
file, G-trkfile. The Borland graphics library routines are used throughout this routine.
Composite mode is supported also; this mode plots every data point in the file while review
mode plots an individual track.

Called fkom:
main display-plot

Calls routines:
ptxadjust abqadjust

Sample call: trkplot(1);

Return value: None

Messages returned None

...
/*FF***
Function name: xstrz

Purpose:
xstr draws the character string at point x,y in the passed color in xor mode. The point x,y
is taken as the bottom lefi corner of the string space. xstrz written by David Skogmo
11/26/9 3

Called -from: trkplot

Calls routines: xordot

Sample call: xstrz(bufid, px+2, py-2, WHITE);

Return value: None

Messages returned None

...

68

..
Function name: xordot

Purpose:
xordot: plots a dot in xor mode at xx, xy

Called fkom: xstrz

Calls routines:
getpixel putpixel

Sample call: xordot(xdot,ydot,color);

Return value: None

Messages returned: None

...

5.7.5. General Purpose Function Headers

Purpose:
Replace the source string with the replacement string. Length of replacement string must
not exceed source string.

Called from: upd-bid-file

Calls routines: None

Sample call: STRUPD(string, vfri.fi., 77);

Return value: Integer value
0 -> success
-1 -> failure

Messages returned:
If the source string is zero length, the next message will appear:
Source string is zero length.

If the replacement string is zero length, the next message will appear:
Replacement string is zero length.

69

If the replacement string is longer than the source string, the
next message will appear:
Replacement s t ing is longer than source string.

. If the starting position is greater than the source string, the
next message will appear:

Starting location is greater than length of source string.

...

...
Function name: RAN_READ

Purpose:
Do a random read of selected file; calculate the offset into the file; the file is assumed fked
length.

Called fkom:
read-bid-file input-data
plotbids get-at-num
upd-bid-file

Calls routines:

Sample call: RAN-RW(G-bidfile, bidloc, BIDBYTES, sting);

Return value: Integer which contains number of characters read

Messages returned None

...

...
Function name: RAN-WRITE

Purpose:
Do a random write into the selected file; the file is
assumed fked length.

Called fkom: upd-bid-file

Calls routines: None

Sample call: R,AN-WRI'I%(G-bidfile, recarr[i], BIDBYTES, string);

Return value: Integer value which is numbers of characters written
70

Messages returned: None ...

Purpose:
readlin reads characters from the passed stream into the passed buffer until the \n char is
encountered. It terminates the buffer with a 0. It returns the number of chars read. If the
end of file is encountered, it returns 0. Written by David Skogmo 4/5/91

Called fkom:
trkplot safescrt
getcfg display-plot
pop-bid-arr input-data
plotbids setupgs
readinpfile

Calls routines: None

Sample call: i = readlin (string, G-bidfile);

Return value: Integer value: number of bytes read in

Messages returned: None ...

Purpose:
This routine computes the file size in bytes - copied from the Borland library reference
manual.

Called fiom: pop-bid-arr

Calls routines: None

Sample call: bytecnt = filesize(G-bidfile);

Return value: long value representing the byte count of the input me.

Messages returned: None

71

..
Function name: table-search

Purpose:
. Do a h e a r search for the integer in the BID array.

Called fiom:.
display-plot input-data

Sample call: loc = table-search(G-bid, G-maxflt, G-bid-choice);

Return value: Integer value: location of match in integer array
-1 is returned if no match is found

Messages returned: None

...

..

Function name: get-int

Purpose: .
Checks the input string for a valid integer value within min/max range.

Called fiom: input-data

Calls routines: None

Sample call: choice = get-int("Enter integer: 'I, 0,4)

Return value: Integer value returned between min and max range

Messages returned: None

...

.
Function name: getreply

Purpose:
Get a Yes or No response.

Cded fiom: display-indata

Calls routines: None

72

Sample call: response = getreply(prompt);

Return value: Integer value
1 for Yes
0 for No

Messages returned: None

...
Function name: mid-extract

Purpose:
Returns middle portion of string; like Quick BASIC's MID$ Eunction

Called fiom:
read-bid-file input-data
plotbids get-flt-nun
upd-bid-file

Calls routines: None

Sample call: mid-extract(instring, outstring, start-loc, num-of-chars)
nun-of chars should start at 0 for counting

Return value: Integer -> number of characters copied or
ZEROLENGTH-STR if input string is null

Messages returned: None ...
...
Function name: char-count

Purpose: Count the number of letters in a string and return the count.

Called &om: chk-plt-nun

Sample call: spacecnt = char-count(dest, BLANK);

Return value: Integer value returns number of occurrences of match.

Messages returned: None

...
73

..
Function name: squeeze

Purpose: Delete all character c from string s

Called from: upd-bid-file

Sample call: squeeze("This is a test", BLANK);

Return value: None

Messages returned None

...

74

. - -
, ' ...

I-.

. I

5.8. Pantex Plot Projection
One of the purposes of the plotflt program is to provide a visual representation of the
ground projections of aircraft, for areas of interest. Three data values are provided to this
code in the radar input fle (e.g., B950211.DAT). These reported data represent the x and
y components of the translated slant range and the altimeter reading &om the aircraft.
To plot the actual ground projections, the aircraR altitude must be accounted for. This
requires several steps. First, the translated components must be translated back into the
radar coordinate system. This is done to insure stability in the solutions to the equations
when solving for the true ground projections. Figure 5-5 shows the reported datum in the
X, Y rectangular coordinate system (doc, yloc). This coordinate system for the Pantex site
is located 7.23 miles north and 7.25 miles east of the actual radar system (these values are
contained in the PSMAP.CFG configuration file). The datum is first translated to the X',
Y' coordinate system.

Y Y

.+; .. 070 I

Radar Site I-. 7.25 miles-! x

Figure 5-5. Radar Source and Recording Coordinate Systems

Once the datum is translated into the radar coordinate system, the following equations
are solved to calculate the actual ground projections before plotting.

x' loc = d o c - (-38280 feet)

75

y' loc = yloc - (-38174 feet)

Slant Range = x' loc2 + y' loc2 J
The airport elevation of 3500 feet must be subtracted fiom the altitude to get the actual
elevation fkom the ground t o the aircraf3. (h = h - 3500). Figure 5-6 shows the three
dimensional coordinate system and the projected values.

The curvature of the earth is insignificant for the recorded distance; therefore it is ignored
in the calculation.

. y'loc

Figure 5-6. Pantex Slant Range Diagram

The X and Y coordinates represent the slant range vectors of the flight. x' and y' represent
the actual ground projections of the aircraft. 0. is the azimuth angle; h is the altimeter
reading to sea level; r is the projected ground distance.

Solving for r, 0, x', and y':

76

Solving for r:

x’ loc2 + y’ loc2 - h2

Solving for 8:

tan e = yy ioc x’ ioc

e = t a - l (y2 ioc x’ ioc
Solving for y’:

y’ = r sin 8
Solving for x‘:

x‘=rcose

To obtain the true projection, the equations x - (-38280) and y - (-38174) are used. These
reduce to x + 38280 and y + 38174. Next, the r value, azimuth angle, projected x and
projected y values are computed and plotted.

The corresponding Fortran code to solve these equations is listed:

h = elev - 3500

if(h .It. 0) h = 0

r l = (x+38280.)2 + (y+38174.)2 - h2
r = sqrt(r1)

angle = atan2 (y+38174., x+38280.)

x’ = r * cos(ang1e) - 38280.

y’ = r * &(angle) - 38174.

77

5.9. VGA Pixel Coordinate System
The safescrt function displays the streets, labels, and radii around the local airport. The
VGA screen is divided into pixels (640 in x, and 480 in y). At Pantex, two targets were

. selected (Zone 4 and Zone 12) and plotted on the screen in pixels. The calculations for
these points are shown below. The data is recorded from coordinate 38280 east (7.25mi),
38174 north (7.23mi)(40Oxy 240y in pixels). This is the center of the screen in Figure 3-1.

The distance from the radar source at Pantex (0,O coordinate) to the two targets Bef. 31 is
shown in Figure 5-5. Distance from radar source to Zone 4 is 37187 feet north (7.04
miles), 41915 feet east (7.94 miles); distance from radar source to Zone 12 is 29103 feet
north (5.51 miles), 44912 feet east (8.51miles).

North

(pixels)

Radar src

Center (400,240) +
* + Zone 4 (417,245)

$- Zone12 (431,282)

0,o East (pixels)

Figure 5-7. Pantex Pixel Coordinates

The coverage radius for the Amarillo radar data is 9.82 statute miles. This value is
obtained from the PSMAP.CFG configuration file. The scale factor for the data can b
calculated as follows:

scale factor = 240Jmax coverage radius

scale factor = 240J9.82 = 24.44 pixels/x.de

Zone 4 distance from source is 7.94 mi. east, 7.04 mi. north

Offset from center point is:

7.94 - 7.25 = .69 x 24.44 pixels = 17 pixels east

7.23 - 7.04 = -19 x 24.44 pixels = 5 pixels south

Zone 4 coordinate is 400 -t- 17 east = 417 east (pixels)

Zone 4 coordinate is 240 -t- 5 south = 245 north (pixels)

78

http://pixels/x.de

Zone 12 distance from source is 8.51 mi east, 5.51 mi. north

Offset .from center point is:

8.51 - 7.25 = 1.26 x 24.44 pixels = 31 pixels east

7.23 - 5.51 = 1.72 x 24.44 pixels = 42 pixels south

Zone 12 coordinate is 400 + 31 east = 431 east (pixels)

Zone 12 coordinate is 240 + 42 south = 282 north (pixels)

The target coordinates (417,245 and 431,282) are plotted in the safescrt function if the
Pantex data is plotted.

The Albuquerque data is centered around the radar source at 0,O; therefore an offset
calculation is not required. However, since the Albuquerque data is given in slant range
coordinates, it is also projected t o ground level coordinates. The abqadjust routine adjusts
the data before the points are displayed.

Intentionally Left Blank

80

6. References

1. David Skogmo, Sandia National Laboratories, Radar Airspace Monitoring System,
November, 1991.

2. John TeGey, Sandia National Laboratories, Plot-Flight User’s Manual Ver 1.0,

3. Tetra-Tech, Distance from Radar Source to the Zone 4 and Zone 12 Points, Internal
Memorandum, March, 1995

SAND95-1819, August, 1995

Intentionally Left Blank

9

82

Distribution:

1 MS0405
1 MS0405
1 MS0405
1 MS0491
1 MS0491
1 MS0491

1 MS0491
1 MS0491
1 MS0491
10 MS0491

1 MS049i

1 MS9018
5 MS0899
1 MS0619
2 MSOlOO

M. P. Bohn, 12333
D. D. Carlson, 12333
T. R. Jones, 12333
M. A. Dvorack, 12333
N. R. Grandjean, 12333
S. A. Kalumba, 12333
M. C. Krawczyk, 12333
Y. T. Lin, 12333
R. J. Rogimki, 12333
R. E. Smith, 12302
J. L. Tenney, 12333

Central Technical Files, 8523-2
Technical Library, 4414
Print Media, 12615
Document Processing, 7613-2
for D OE/OSTI

r

-..

,

83

.. . I
, * -

	1 Introduction
	2 Overview of SARS
	3 Data Collection Software
	3.1 Zone 4 Software Description
	3.2 Radar File Formats
	3.2.1 Beacon File Format
	3.2.2 Filtered Primary Radar Format
	3.2.3 Unfiltered Primary Radar Format

	3.3 Zone 4 Compile Instructions
	3.4 Additions/Modifications to Zone 4 Software
	3.4.1 Green Strip/Electronic File Time Correlation
	3.4.2 Zone 4 Display Screen

	3.5 Zone 4 Software Diagram
	3.6 Zone4 Module Description
	3.6.1 ZONE4A.BAT File
	3.6.2 Zonea Executable File

	4 Postprocessing Software
	4.1 Sanitize Software Description
	4.2 Sanitize Calling Sequence
	4.3 Sanitize Subroutine Description
	4.4 Sortdata Software Description
	4.5 Sortdata Calling Sequence
	4.6 Sortdata Subroutine Description
	4.7 Sortflt Software Description
	4.7.1 Flight Index File Description
	4.7.2 Beacon Index File Description
	4.7.3 Sottflt Report File Description

	4.8 Sortflt Include File
	4.9 Sortflt Calling Sequence
	4.10 Sortflt Subroutine Description

	5 Aircraft Viewing Software
	5.1 Plotflt Software Description
	5.2 Main Program Description
	5.3 Main Program Calling Sequence
	5.4 Plot Display Mode
	5.4.1 Overview
	5.4.2 Plot Display Process

	5.5 Data Input Mode
	5.5.1 Overview
	5.5.2 Data Input Process

	5.6 Plotflt Include File
	5.7 Plotflt Function Descriptions
	5.7.1 Main Function Headers
	5.7.2 Plot Display Function Headers
	5.7.3 Data Input Function Headers
	5.7.4 Plot Display and Data Input Function Headers
	5.7.5 General Purpose Function Headers

	5.8 Pantex Plot Projection
	5.9 VGA Pixel Coordinate System

	6 References
	Figure 2.1 SARS Hardware Data Collection and Post-processing System
	Figure 2.2 FAAEARS Interface
	Figure 3.1 Zone 4 Output Screen
	Figure 3.2 Sample Flight Arrival Green Strip
	Figure 5.1 Main Program Diagram
	Figure 5.2 Sample Plot Using Display Mode
	Figure 5.3 Display Mode Process Diagram
	Figure 5.4 Data Input Process Diagram
	Figure 5.5 Radar Source and Recording Coordinate Systems
	Figure 5.6 Pantex Slant Range Diagram
	Figure 5.7 Pantex Pixel Coordinates
	Table 3.1 Beacon File Format
	Table 3.2 Filtered Primary Radar Format
	Table 3.3 Unfiltered Primary Radar Format
	Table 4.1 6940201 IDX Flight Index Table
	Table 4.2 6940201 BID Beacon Index File

