Synthesis of Pu-Doped Ceramic

PDF Version Also Available for Download.

Description

Plutonium-doped zircon containing about 10 wt% Pu was synthesized in this cooperative project between Russia and the United States conducted at the V. G. Khlopin Radium Institute. The sol-gel method was used for starting precursor preparation to provide complete mixing of initial components and to avoid dust formation inside the glove-box. The sol-gel process also gives interim Pu stabilization in the form of amorphous zirconium hydrosilicate (AZHS), which is a result of gel solidification. AZHS is a solid and relatively durable material that can be easy converted into crystalline zircon by pressureless sintering, thus avoiding significant radioactive contamination of laboratory ... continued below

Physical Description

189 Kilobytes

Creation Information

Anderson, E. B September 2, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plutonium-doped zircon containing about 10 wt% Pu was synthesized in this cooperative project between Russia and the United States conducted at the V. G. Khlopin Radium Institute. The sol-gel method was used for starting precursor preparation to provide complete mixing of initial components and to avoid dust formation inside the glove-box. The sol-gel process also gives interim Pu stabilization in the form of amorphous zirconium hydrosilicate (AZHS), which is a result of gel solidification. AZHS is a solid and relatively durable material that can be easy converted into crystalline zircon by pressureless sintering, thus avoiding significant radioactive contamination of laboratory equipment. A methanol-aqueous solution of tetraethoxysilane Si(OC2H5)4, Pu-nitrate, and zirconil oxynitrate was prepared in final stoichiometry of zircon (Zr,Pu)SiO4 80 wt% + zirconia (Zr,Pu)O2 20 wt%. Gelation occurred after 90 hours at room temperature. AZHS with excess of zirconia 20 wt% was obtained as an interim calcine product and then it was converted into zircon/zirconia ceramic by sintering at 1490 to 1500°C in air for different time periods. The samples obtained were studied by SRD and ESEM methods. It was found that both zircon yield and zircon cell parameters that are correlated with Pu incorporation depend on sintering time.

Physical Description

189 Kilobytes

Source

  • American Nuclear Society Third Topical Meeting DOE Spent Nuclear Fuel and Fissile Materails Management, Charleston, SC, September 8-11, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00001730
  • Report No.: UCRL-JC-130179
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 1730
  • Archival Resource Key: ark:/67531/metadc671848

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 2, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 20, 2016, 6:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anderson, E. B. Synthesis of Pu-Doped Ceramic, article, September 2, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc671848/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.