Stability of the graphite and diamond phases of finite carbon cluster

PDF Version Also Available for Download.

Description

The stability of particulate carbon formed in the detonation of high explosives has been investigated with first principles and semiempirical molecular orbital calculations carried out on carbon clusters. The dangling surface bonds were capped wit/r hydrogen atoms and the surface contributions to the cohesive energy were removed by extrapolation as a function of the cluster size. Comparison of the calculated heat of formation of graphite and diamond particles as a function of size predicts that the graphite phase becomes more stable for IO<sup>4</sup> -10<sup5</sup> carbon atoms. Calculations were also carried out on geometry optimized carbon clusters without capping atoms, resulting ... continued below

Physical Description

839 Kilobytes

Creation Information

Ree, F & Winter, N W August 28, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 130 times , with 35 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The stability of particulate carbon formed in the detonation of high explosives has been investigated with first principles and semiempirical molecular orbital calculations carried out on carbon clusters. The dangling surface bonds were capped wit/r hydrogen atoms and the surface contributions to the cohesive energy were removed by extrapolation as a function of the cluster size. Comparison of the calculated heat of formation of graphite and diamond particles as a function of size predicts that the graphite phase becomes more stable for IO<sup>4</sup> -10<sup5</sup> carbon atoms. Calculations were also carried out on geometry optimized carbon clusters without capping atoms, resulting in reconstructed cluster surfaces that may be a more realislic model for particulate carbon formed under the extreme conditions of detonation. The calculated energy barrier for tbe conversion of a graphitic cluster to the cubic diamond structure was in good agreement with calculations on b

Physical Description

839 Kilobytes

Subjects

Source

  • Detonation Symposium, Snowmass, CO, August 30-September 4, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00002533
  • Report No.: UCRL-JC-127880
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 2533
  • Archival Resource Key: ark:/67531/metadc671760

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 28, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • May 6, 2016, 11:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 35
Total Uses: 130

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ree, F & Winter, N W. Stability of the graphite and diamond phases of finite carbon cluster, article, August 28, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc671760/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.