Final Technical Progress Report

Department of Energy (DOE) grant number DE-FG01-91CE15511
Project Title: Optimization and Scale-Up of Fermentation Process for Production of Microbial Polysaccharide.
Clarence S. Buller, Department of Microbiology, University of Kansas, Lawrence, KS 66045

This grant was awarded to provide for the scale-up of the process of production of a (1-3)-β-D-glucan which is produced by Cellulomonas flavigena. One of the goals was to provide sufficient amounts of the polysaccharide polymer to conduct a field test of its usefulness in subterranean permeability modification procedures of enhanced oil recovery.

Abbott Laboratories, Chemical & Agricultural Products Division, Custom Fermentations, North Chicago, IL was selected to provide the fermentation.

During September and October, 1994, fermentations and recoveries were done by Abbott Laboratories, to develop a process to provide at least 400 lbs of the glucan polymer for field testing. Shake flask runs and four fermentation runs were completed. A summary of the fourth fermentation run, conducted in a 40,000 liter fermentor, follows:

I. Fermentation conditions and yields

Corn syrup was used at a concentration of 25 gm/liter to provide the carbon and energy source for the growth of Cellulomonas flavigena. The culture was incubated for 72 hrs. It was then cooled to 20°C and prepared for harvest and extraction of the glucan. Table 1 shows the progress of the fermentation and the glucan produced by the bacteria.

Table 1. Growth of Cellulomonas flavigena in 40,000 Liter Fermentor Vessel

| Age (hours) | OD | Residual Glucose | PCV (%) | NH₃ | Concentration (gm dry weight) of glucan | Glucan
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.19</td>
<td>28.7</td>
<td>-</td>
<td>530</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>1.73</td>
<td>26.3</td>
<td>0.7</td>
<td>391</td>
<td>-</td>
<td>0.12</td>
</tr>
<tr>
<td>24</td>
<td>8.64</td>
<td>21.3</td>
<td>3.5</td>
<td>10</td>
<td>-</td>
<td>0.65</td>
</tr>
<tr>
<td>36</td>
<td>16.6</td>
<td>16.5</td>
<td>5.5</td>
<td>2</td>
<td>3.7</td>
<td>2.48</td>
</tr>
<tr>
<td>48</td>
<td>28.4</td>
<td>11.8</td>
<td>5.4</td>
<td>2</td>
<td>5.3</td>
<td>4.6</td>
</tr>
<tr>
<td>60</td>
<td>29.1</td>
<td>6.8</td>
<td>5.3</td>
<td>2</td>
<td>6.1</td>
<td>6.72</td>
</tr>
<tr>
<td>72</td>
<td>28.5</td>
<td>4.4</td>
<td>5.5</td>
<td>2</td>
<td>6.6</td>
<td>9.11</td>
</tr>
</tbody>
</table>

1. Hours incubation at 30°C
2. Optical density of culture
3. Residual corn syrup (as glucose) in medium
4. Packed cell volume (per cent of culture volume)
5. Ammonia nitrogen content
6. Grams hydrogel producible by 15 ml of culture
7. Concentration (gm dry weight) of glucan/liter of culture
The optical densities reached, amount of glucose used, and glucan produced were what was hoped for on the basis of improvements from first three fermentations.

II. Recovery of (1-3)-β-D-Glucan - Production Scale

Figure 1 illustrates the steps involved in the extraction of the (1-3)-β-D-glucan from the bacteria and the partial purification of the extract. Thirty seven thousand and three hundred (37,300) liter of culture was processed. Table 2 provides the material balance for the procedures depicted in Fig. 1.

Table 2. Material Balance

<table>
<thead>
<tr>
<th>Material</th>
<th>Kgs</th>
<th>g/l (1-3)-β-D-glucan</th>
<th>Kgs (1-3)-β-D-glucan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broth</td>
<td>37,300</td>
<td>8.4</td>
<td>313</td>
</tr>
<tr>
<td>Cell-glucose slurry</td>
<td>5,700</td>
<td>56.8</td>
<td>324</td>
</tr>
<tr>
<td>Dilute extract</td>
<td>17,580</td>
<td>17.5</td>
<td>308</td>
</tr>
<tr>
<td>Cell slurry (waste)</td>
<td>3,800</td>
<td>8.8</td>
<td>33</td>
</tr>
<tr>
<td>Solution (unfiltered)</td>
<td>13,500</td>
<td>25.9</td>
<td>322</td>
</tr>
<tr>
<td>Solution (at load-out)</td>
<td>12,900</td>
<td>24.9</td>
<td>321</td>
</tr>
</tbody>
</table>

III. Field test of suitability of (1-3)-β-D-glucan for subterranean permeability modification.

On October 21, a shipment of 29,000 lbs of an alkaline extract containing more than 2% of the (1-3)-β-D-glucan was delivered from Abbott to a field site (Nelson Lease) in southeast Kansas. The conduct of the field test was supervised by the Tertiary Oil Recovery Project (TORP), University of Kansas. Almost all of the alkaline extract of the glucan was successfully injected into a test well. However, numerous unanticipated technical problems were encountered during the field test. Data are still being collected and analyzed, and final conclusions concerning the outcome of the test have not yet been determined.

The alkaline solution of the (1-3)-β-D-glucan produced by Abbott performed as expected, and gels of good quality were formed. Lab scale research on the use of the polymer in permeability modification is continuing, and we remain optimistic that polymer will have successful applications in enhanced oil recovery procedures.

Clarence S. Buller
December 21, 1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Figure 1. Recovery of β-Glucan: Production Scale

BETA GLUCAN Process Recovery

- 10500 Kgs Water
- 1424 Kgs of 24% NaOH
- 31,600L Effluent
- 13,500L Effluent
- 5700L Slurry
- 228 Kgs Filter Aid (~57 Kgs/batch)
- 12,900 Kgs
- Cool to <5.0 C

Ship to Customer via Refrigerated Truck