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AISTRACT 

This paper illustrates the use of the simulation- 
optimization technique of response surface methodology 
(RSM) in traffic signal optimization of urban networks. 
it also quantifies the gains of using the common random 
number (CRN) variance reduction strategy in such an 
optimization procedure. An enhanced RSM algorithm 
which employs conjugate gradient search techniques 
and successive second-order models is presented instead 
of the conventional approach. An illustrative example 
using an urban traffic network exhibits the superiority of 
using the CRN strategy over direct simulation in 
performing traffic signal optimization. The relative 
performance of the two strategies is quantified with 
computational results using the total network-wide delay 
as the measure of effectiveness (MOE). 

1 INTRODUCTION 

- 

In many simulation studies the analyst is interested in 
zxploring the settings of the non random inputs, called 
the factors, to yield an optimal output, called the 
response. For this purpose, simulation runs are 
performed at different factor levels, to investigate the 
effects ofthe factors on the response. The analyst then 
attempts to estimate a meramodel of a selected response, 
that is. a linear or non-linear model of the mean 
response in terms of the factors. This estimated 
metamodel is used to perform a sequential search in an 
attempt to find the optimal (or near optimal) value for 
the response. This process of achieving optimality of 
responses will be referred to as the simulation- 
optimization technique. The sequential search 
employed by such techniques depend rxtensiveiy on the 
estimation of the rnetamodel parzmeter. The quality of 
such a search depends upon the walitv of estimation 
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of these parameters. Since this procedure assumes 
stochastic nature of responses, the estimates of the 
unknown parameters of such metamodels inherit certain 
amount of variability. The quality of these estimates is 
characterized by their variance. Reduced variance of 
these estimates suggests improved search directions for 
the optimization procedure. 

Variance reduction techniques (VRT) try to reduce 
the variance of the estimates of interest. Among the 
various correlation-induction techniques used as VRT, 
such as the common random number strategy, antithetic 
variates, control variates, etc., the focus of this paper is 
on the use of the common random number strategy. 

The goal of this paper is to demonstrate the use of 
common random number (CRN) strategy in the 
simulation-optimization technique of response surface 
methodology (RSM). After providing a theoretical 
framework illustrating the superiority of the using 
comtnon random numbers over direct simulaticn in 
RSM studies, this idea is demonstrated with illustrative 
examples on a sample urban network. Quantitative 
gains of using the CRN strategy over ordinary 
simulation. or the Independent Streams strategy 
(referred to, as the IS srraregv), are also illustrated. 

The remainder of this section discusses a modified 
RSM algorithm and the CRN strategy. Section 2 
develops the theoretical framework, illustrative 
exampies are included in Section 3, and Section 4 
presents the conclusions of this study. 

1.1 RSM 

This sub-section presents a standard RSM algorithm 
offered by Myers (1976). For the modified RSM 
algorithm used by this work. the reader is referred to 
Joshi, Sherali, and Tew (1994) . 
Stea I :  Fit a first-order regression model to the mean 
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response over some restricted region o f t h ~  factor space. 
Step 2; Estimate the path of stetpest descent using the 
first-order model. 
SteD 3; Sewch along the path of steeper descent until 
no further improvement in the mean response is 
observed 
Step 4: Estimate the mow favorable response based on 

Repeat Steps 1 through 4 aver a new region. If 
curvamre is evident, then perform an elaborate search 
uing a second-order experimental design. Report the 
optimum solution. 

For Step 1, the experimenter should judiciously 
select an experimanral design which has desirable 
properties such as mininium variance in order to obtain 
berm estimates of the unknown parameters. Ihe first- 
order linear model is represented as 

&e iirst three otcps. 

wherp;y,, is the response at thejth replication and the rth 
design point. x p  x3 ..., x, are the k factor variables, pi are 
the unknown parameters of the linear model, and e;, is 
the error term at the ith design point and the jth 
replicarim (i = 1,2, ..., m, j = 1, 2, ..., r, I =  1,2, --., k). 

Let blbe the esrimates of p, ( I  = 1,2, ..., k). Step 2 
uses these estimates to compute the path of steepest 
descent given by (4,, -b2, ..., -63. Responses are 
observed along this path until no M e r  improverneat 
is achieved. At this point, if curvature is evident, then 
a second-order model is used and is given by 

where O h  pM and ptt are the unknown parameters ofthe 
second-order modal = I ,  2, ..., k, h 3 0 and the 
remaining tens are 8s defided in (1). This model is 
used to perform a cmonical analysis which involves 
evaluation and analysis of the srationary poinc. Using 
this analysis, SUI optimum% reported perhaps following 
some additional investigation in the case of a detected 
ridge system. The next sub-section presents the CRN 
strategy which is combined with &is algorithm to 
improve the RSM technique in practice. 

1.2 Common Random Number Strategy 

The idea of the CRN strategy is to compare alternative 
sirnulation models under similar experimental 
conditions in order to improve confidence that observed 

diffwces in perf;6rmance we due to rhe differences in 
the model structure rather than to the difference in the 
experimenr itself (see p. 61 of Law and Kelton 1991). 
Under the CRN strategy, the Same set of random 
number s m s ,  Ri = { r,,, rib ..., r,J is applied to ail m 
design points in rhe ith replicate where g is the nunbet 
of streams used to drive the simulation model. Also, 
independent random number streams are used UCYOS 
replicates of the experimental design. Replicadons 
reduce the variance af the outputs and also present 
means ofeompudng pure m r .  

For the CRN srrategy applied to simulation 
experiments, we make the following assumptions: 
1.  The response variance is constant across all design 
poirlts, so that farj = 1.2, ..., tn and i = 1,2, ---, r, 

u; = varcv,/(BI)) = &I.  (3) 

2, There is a constant nonnegative correlation between 
all pairs of responses within a glVEt¶ replicate. y,j and y, 
Qd). That is, fori F A, andf ( j ,  k (  m, atid# < p +  { 1, 

mrr b,$d = P . . (4) 

3. The vector of responsts comprising the irh replicate 
has a multivariate normal distribution. Under the fmt 
two assumptions, the covarimce manix between 
observatiolls within a replicm is given by 

[ l  P.  ' 9 P,] 

Note that the variance on the estimates of the 
unknown parameters of the h e w  model in (1) is uz 
under IS slnwgy, but is reduced by a factor of [1-p+)u2 
under the CRN dxategy (3te Joshi aad Tew 1995). The 
next section discusses rhe gabs of using the CRN over 
IS strategy in RSM studies. 

2 ANALYTICAL RESULTS FOR rcSM UNDER 
THE CRN STRATEGY 

As the gradient search is performed the statistic of 
interest is the dinerenee between the responses along the 
path. If we denote y0 as rhe mean response at the ccmr 
of the current design, and 8 (i = 1, 2, ..-, w) as the w 
mean responses along the gradient seareh path, then our 
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statistics of interest are 8- $-, (j = I ,  2, ..., w). Under 
the CRN sc.bmi?, we apply the same randim number 
smms to drive the stochastic components to obtain 
simulation responses 5 (j = 0,1, ..., w). By the firs two 
Pssumptions of the CR;N strategy, we have positive 
correlations p+ induced among all these responses. 
Under the independent strategy, 0 = 1,2, ..., w) 

PP (d,rO. 4 2 0 ,  ..,, d,,zO). (8) 

This probability is different under rhe IS and CRN 
strategies. We now prove that the above probability is 
higher under the CRN sttw.egy than under the lis 
strategy. Proving this would also indicate that the 
power of the teg under the CRN strategy i s  greater than 
that under the IS strategy for the following hypothesis 
rcst 

&: d, 1 0, dz 1 0, ..., d, 10, versus, 
HI: Any ofthe above conditions is violated. while under the CRN mtegy, 

Wet know that the 4's are nor independent and so 
the tests on the dj4 are also not independent. Now, 

Note that while COVW~E-,) = 0 under the IS strategy, we 
induce covmknees between paus Qf rcsponsw under he 
cRN suategy such that covi'j7&,) = p W .  Thus, we ger 
for the IS Sttategy, 

where r is the number ofnqlicatiws performed at each 
design point, and m2 is the homogeneous variance of the 
response ai each design point (see Joshi and Tew 1995): 

I .  the variance on the 
statistic of interest in rhe gradient search procedure 
approachm zero, That is, if w e  can induce large 
covariances or correlations between responses, then we 
have a larger reduction in variance of the statistics of 
interest under the gradient scmh method. "he expeded 
reduction in variance being the magnitude of the 
induced correlation. 

The advantage of using CIW for rhe gradient search 
can be chharactaized in mother way. In the gradient 
search, assume that once the step length A is fixed. we 
need to take exactly w steps brfm the response starts 
increasing. That is. after fixing the step length, we 
should get responses to improve exactly until the 
[w-l)st step, and on the Hcth step, the response should 
increase forcing us to stop rhe gradient search 
procedure. However, due to natural variation in y, the 
variance in the mean response§ may be so large that this 
could result in the search taking something other than 
exactly w steps along the gradient. We would like to 
inmeaSe the prokmbility that the experimenter stops after 
exactly w steps. 

In other w9rd5i, the gradient search procedure is 
similar to performing sequential tests of the form (i = 

From (7) we see that as p 

and for the CRN strategy, 

2uy 1 - $3) varId$ = 

1, 2, ..., w) 
1%: 4-~5,50,vs, H,: p y I . , ) @ .  

lf ths search IS pdrfbrmed accurately, then th 
experimenter should fail to reject the first ul rests, and 
reject rhe wth test. For this purpose, let us first define 

imizing the probability that the experimenter stops after 
exactly w steps, is therefore equivalent to maximizing 
tht fdlowing probability 

d, --<, (i=&?, ..., awl), and d,, .& -E-,, Ma- 

Also, under the IS strategy 

md under the CRN strategy, 

The variance-covariance mark of d,k is thus a 
mdiaganal matrix denoted by 8. Note that the structure 
of this ma& is identical under &e two simulation 
saetegies, and this matrix is represented as 
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where y = 2a3/r under the IS strategy and y = 2 d  
(1-p3/r undmthe CRN strategy. Also, 8 = -d/ r under 
h e  IS strmegy and 6 = - d ( l - p 2 ) h  under the CRN 
straiegy. 

To obrdn independem tests on d,'s, we use an 
onhcgor.lal transformation dmnoted by r, such that 

c3r = rrJF (151 

is B diagonal manix. Note r is an odmgmal ma& 
whose cblumns comptise of he eigmvecmrs of 8. The 
rransfonnarictn r will be different under IS and CRN 
strategies, but will have the same matrix smcture. 
Thus, if we transform d id,, d, ..., dJ to Gsuch that 

sad let s' 9 (4, a$,,.., a, then the RSLS performed on d: 
are independent The goal then becomes to maximize 
the fallowing probability 

Using ~jl BS the standard normal cumulative dutributicin 
function, we can standardize the individual 4s under 
both strategies. For notational convenience, di's are 
replaced by d,'s so that the d;$ under the CRN strategy 
would actually refer to he 4 ' 5  from (16). The 
pmbabiliries are then obtained as (i = 1,2, ..., w)? 

where ii is the. mean of d, (i = 1,2, *..,w} and 02 is &e 
homogeneous variance of all d,. Hmce the 
homogeneous variance of all 2s is ud2/ w. me goal in 
(1 8) is now equivalent u) minimizing o+ Eqmions ( 10) 
and (1 1) give the expressmns for uZd under the IS and 
CRN straicgy, respectively. We notice that under the 
cm Strareg , a,, is less than that under IS Sh&tegy by B 
factor of +- I + ,  thus showing the superiority of the 
CRN over the IS rrrategy. 

3 COMPUTATIONAL RESULTS 

An urban rraffic network shown in Figure 1 is used to 
comprtre the relative effectiveness of CRN and IS 
smategies in the context of the RSM algorithm. The 
simvlation model used for the purpose of this study is a 
microscopic model developed by the Federal Highway 
Administration (FHWA), called TRAF-NETSIM. To 
justify the validity of these quantitative results, five 
opcimizatiop searchcs were conducted using the same 
initial solution but empioying different random number 
seeds under each search. The relative pGtfarmance of 
the two strategies is quantified using the total delay in 
the network 85 the measure of effectiveness (MOE). 

Table 1 represents the geornmk characteristics of 
the urbm aaffic network under mdy. It is assumed that 
at any stage ofthis search, the model can be represented 
as B rust-order m d l  inx, and xh as in (I)  or a second- 
order model as given by {2), A 2' factorial experiment 
is used to eonstrum the first-order model and a cenud 
composire design for the second-order madel. Two 
replications are performed at Each design point The 
decision variables are the p e n  Splits for aaffic at node 
5 for approach node 13 (x,) and at node 8 for approach 
node 14 (XJ. The starting soldan was 32 seconds for 
each variable. Five optimization search= are conducted 
under both stsategies. 

fable 2 exhibits the optimal SOlUtiOTk for the &,tal 
delay in the newark in person-minutes r q ~ d  under 
both strategies. The average delay in the network across 
all five searches is 15085 under the CRN strategy and 
15597 under the IS strategy. The RSM procedure 
carried aut under the CRN strategy yields a delay 
estimare which is 8 hours less than &fit wrried aut under 
the IS s~aregy, dtus illustrating the superiority of the 
CRN srraregy. We also observed that only one of the 
five searches conducted mder the IS slmtegy achieves 
improving direction, in c m m t  to all five searches 
conducted under the CRN strategy. 

Table 3 indicates the average gain in delay per 
simulation run. This can be ~n ememely importmt 
soadstic for practitioners, especially if the network mder 
study is large and therefore requires large amounts of 
simulation time. In such a situarion, the analyst would 
like to achieve the optimal (or near optimal) solution in 
BS small number of simulatian run5 as possible. In 
addition, it will also necessitate a reduction in rhe 
number of repficatbns at each design point. 

4 CONCLUSIONS 

L 
The application of the CRN strategy in a standard 
simulation-RSM algorithm is demonstrated with an 
illustrative traffic network. Correlation-induction 
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Tabb 1: Netwark Description 

Link ten@ I All links 

Si& Can& 
Nodcs 5,6,7, and 8 I All odtn ndea 

Signal Conaol. 
PcrPtRld Gmn. 

Table 2: Total Delay in the Network 
~ 

Search # ~p r ima l r spo r#d~  
delay in the network 

(person m m w )  
I c 

CRN ISSrratCgy 
StC8tCgy 

1 15638 15794' 

3 1 15113 I 15694' 1 
4 15054 15203 

5 15135 15681' 
.I--. . 

Average I 15085 1 15597 I 
* indicatm that the starch failed. 

Tabb 3: hprovemunt pa simuletian run 

Figure I: Traffic Nclwork 
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