LA-UR-95-4145

Author(s):

Submitted to:

Los Alamos

NATIONAL LABORATORY

Calculation and Measurement of Stimulated Rotational Raman Scattering in Atmospheric Oxygen

N. A. Kurnit
Los Alamos National Laboratory
MS E526, Los Alamos, NM 87545

Abstract

Calculations of the rotational Raman gain in atmospheric air that indicate that O_{2} has more than 75% of the peak gain of N_{2} have been substantiated by experiment.

Calculation and Measurement of Stimulated Rotational Raman Scattering in Atmospheric Oxygen

N. A. Kurnit
Los Alamos National Laboratory
MS E526, Los Alamos, NM 87545

It is well known that stimulated rotational Raman scattering (SRRS) in atmospheric nitrogen presents a limitation to the propagation of high intensity laser radiation through long air paths. ${ }^{1-3}$ A method that has sometimes been proposed to mitigate this problem in laser fusion facilities is to replace part of the air path with a breathable mixture of oxygen and a monatomic gas such as argon. However, some earlier calculations, ${ }^{4}$ which have now been extended and verified by experiment, indicate that the peak SRRS gain of oxygen in atmospheric air is approximately 77% that of nitrogen in air at the wavelength of Nd:glass lasers, and increases slightly, to about 80%, at the third harmonic.

A calculation of the rotational Raman gain in atmospheric nitrogen and oxygen at 1053 nm is indicated by the stick spectrum in Fig. 1. The lines are labeled by the rotational quantum number of the lower level as typically used for an S-branch transition, although the oxygen spectrum is actually more complicated, exhibiting fine structure caused by the multiplicity of the rotational levels of the ${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}$ground state. ${ }^{5}$ This splitting has almost no effect on the calculated spectrum for all but the lowest rotational levels, but was mistakenly assumed to lower the gain by a factor of three in a previously published calculation. ${ }^{3}$

The experiment carried out to validate these conclusions consisted of focusing up to 250 mJ of circularly-polarized $355-\mathrm{nm}$ radiation first in an air path and then through a cell that could be filled with various mixtures of gases. Although it was possible to reach threshold in this way, the system was double-passed in order to further lower the threshold. With the cell filled with air, the typical rotational spectrum of nitrogen was observed. Filling the cell with a 600 Torr $20 \% \mathrm{O}_{2} / 80 \% \mathrm{Ar}$ mixture produced the SRRS spectrum of O_{2} shown in Fig. 2(a). The amount of ant-Stokes radiation observed was highly dependent on the degree of circular polarization that could be maintained after several turning mirrors. With the cell half-filled with the $\mathrm{O}_{2} / \mathrm{Ar}$ mixture and half-filled with air, it was possible to obtain the mixed spectra shown in Fig. 2(b). It should be noted that because of optics losses the two focuses in the air path account for approximately 6% more gain than the two focuses in the cell. These results are in good agreement with the expected
ratio of approximately 80% of the gain on the peak O_{2} and N_{2} lines. It should also be noted that some of the lines are very-nearly overlapped, particularly the $\mathrm{N}_{2} \mathrm{~S}(9)$ and O_{2} $S(13)$ which differ by less than $0.25 \mathrm{~cm}^{-1}$ and which appears as one of the strongest lines in the spectrum when the gains are nearly equalized. This line has previously been observed in the SRRS spectrum of air and attributed to $\mathrm{N}_{2} .{ }^{2}$

References

1. M. A. Henesian, C. D. Swift, and J. R. Murray, Opt. Lett. 10, 565 (1985).
2. M. D. Skeldon and R. Bahr, Opt. Lett. 16, 366 (1991).
3. M. Rokni and A. Flusberg, IEEE J. Quantum Electron. QE-22, 1102 (1986).
4. N. A. Kurnit, 4th Int.Laser Science Conf. (ILS-IV), Atlanta, GA, Oct. 2-6, 1988, BAPS 33, 1651 (1988).
5. D. L. Renschler, J. L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spec. 31, 173 (1969).

Figure Captions

Fig. 1 Calculated rotational Raman spectrum of N_{2} andO O_{2} in air.
Fig. 2. a) Observed spectrum of O_{2} with $\mathrm{O}_{2} / \mathrm{Ar}$ in cell. b) Spectrum with mixtures in cell to give nearly equal gain on O_{2} and N_{2}.

