Unified model of the rf plasma sheath: Part 2, Asymptotic connection formulae

PDF Version Also Available for Download.

Description

A previously-developed approximation to the first integral of the Poisson equation enables one to obtain solutions for the voltage- current characteristics of a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current-specified conditions. The theory reproduced the time-dependent voltage-current characteristics of the two extreme cases corresponding to the Lieberman rf sheath theory and the Metze-Ernie-Oskam theory. In this paper the sheath model is connected to the plasma bulk description, and a prescription is given for the ion relaxation time constant, which determines the time-dependent ion ... continued below

Physical Description

68 p.

Creation Information

Riley, M.E. August 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 66 times , with 5 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A previously-developed approximation to the first integral of the Poisson equation enables one to obtain solutions for the voltage- current characteristics of a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current-specified conditions. The theory reproduced the time-dependent voltage-current characteristics of the two extreme cases corresponding to the Lieberman rf sheath theory and the Metze-Ernie-Oskam theory. In this paper the sheath model is connected to the plasma bulk description, and a prescription is given for the ion relaxation time constant, which determines the time-dependent ion impact energy on the electrode surface. It appears that this connected model should be applicable to those high density, low pressure plasmas in which the Debye length is a small fraction of the ion mean free path, which itself is a small fraction of the plasma dimension.

Physical Description

68 p.

Notes

OSTI as DE96014005

Source

  • Other Information: PBD: Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96014005
  • Report No.: SAND--96-1948
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/274143 | External Link
  • Office of Scientific & Technical Information Report Number: 274143
  • Archival Resource Key: ark:/67531/metadc671547

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 1:58 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 66

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Riley, M.E. Unified model of the rf plasma sheath: Part 2, Asymptotic connection formulae, report, August 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc671547/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.