TITLE: ATMOSPHERIC PRE-CORRECTED DIFFERENTIAL ABSORPTION TECHNIQUE TO RETRIEVE COLUMNAR WATER VAPOR: THEORY

AUTHOR(S): Christoph C. Borel, NIS-2
 Daniel Schlapfer, NIS-2

RECEIVED
MAR 13 1996

SUBMITTED TO: The 6th Annual JPL Airborne Science Workshop 1996, 4-6th of March, JPL Pasadena
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ATMOSPHERIC PRE-CORRECTED DIFFERENTIAL ABSORPTION
TECHNIQUES TO RETRIEVE COLUMNAR WATER VAPOR:
THEORY AND SIMULATIONS

Christoph C. Borel and Daniel Schläpfer
Astrophysics and Radiation Measurements Group, NIS-2, MS C323,
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA
cborel@lanl.gov

1 Introduction

Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data:

1. Differential absorption techniques based on:
 (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (Frouin et al, 1990)
 (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels (Green et al, 1989, Bruegge et al, 1990, Gao and Goetz, 1990a, and Carrère and Conel, 1993)

2. Non-linear fitting techniques which are based on spectral radiative transfer calculations (Gao and Goetz, 1990b, Green et al, 1993).

The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation (Middleton, 1952, p.68) we derived an “Atmospheric Pre-corrected Differential Absorption” (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis (section 2). Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better (section 3). An extensive data set was created with the radiative transfer code 6S (Vermote et al, 1994) over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than ±5% (section 4). The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique (see paper in these proceedings: Schläpfer et al, 1996).

2 Derivation of the Atmospheric Pre-Corrected Differential Absorption Technique

Duntley in 1948 expressed the radiance L measured in channel i by a sensor as:

$$L_i = \rho_{g,i}E_iT_i + L_{h,i}(1 - T_i^*) = L_{g,i}T_0,iT_i(PW) + L_{p,i}(PW),$$ \hfill (1)
where \(p_{gi} \) is the ground reflectance, \(E_i \) is the solar irradiance, \(T_i \) is the total transmission and \(L_{h,i} \) is the radiance one would measure in a plane parallel atmosphere in horizontal direction and \(T_i^* \) is a special transmission term (Duntley assumes: \(T_i = T_i^* \)). The precipitable water vapor \(PW \) in \([g/cm^2]\) causes additional atmospheric transmission \(T_i(PW) \). The transmission without any water vapor is \(T_{0,i} \) and depends on aerosols and gas absorptions. The path radiance \(L_{p,i} \) is the sum of the atmospherically scattered radiance \(L_{atm} \) and the adjacency scattered radiance \(L_{adj} \).

Using this equation we first write the radians in three channels \(i = m, r1 \) and \(r2 \) where \(m \) is a measurement channel in an absorption region, e.g. the 940 nm water vapor absorption, and \(r1 \) and \(r2 \) are two reference channels. The transmission \(T_i(PW) \) is a function of water vapor for channel \(m \) but not for the reference channels \(r1 \) and \(r2 \). Assuming a small difference between the central wavelengths \(\lambda_{r1} \) and \(\lambda_{r2} \) of the reference channels and \(\lambda_{r1} < \lambda_m < \lambda_{r2} \) the radiance \(L_{m}(PW) \) can be approximated by a linear interpolation as:

\[
L_{m} = [w_{r1} L_{g,r1} T_{0,r1} + w_{r2} L_{g,r2} T_{0,r2}]T_{m}(PW) + L_{p,m}(PW),
\]

(2)

where

\[
w_{r1} = \frac{\lambda_{r2} - \lambda_m}{\lambda_{r2} - \lambda_{r1}} \quad \text{and} \quad w_{r2} = \frac{\lambda_m - \lambda_{r1}}{\lambda_{r2} - \lambda_{r1}}.
\]

(3)

Note that we assume the reference channels have no water vapor absorption or \(T_{r1}(PW) = 1 \) and \(T_{r2}(PW) = 1 \). Solving equation (2) for the transmission in the water vapor channel \(T_{m}(PW) \) and substituting \(L_{g,r1} \) and \(L_{g,r2} \) from equation (1) we find an equation similar to the CIBR (see equation (7)) but with atmospheric pre-correction terms for the path radiances \(L_{p,i} \):

\[
T_{m}(PW) = \frac{L_{m} - L_{p,m}(PW)}{w_{r1}(L_{r1} - L_{p,r1}) + w_{r2}(L_{r2} - L_{p,r2})}
\]

(4)

Note however that \(L_{p,m} \) is also a function of water vapor which can be expressed using a polynomial of second (or higher) order:

\[
L_{p,m}(PW) = aPW^2 + bPW + c + L_{adj,m},
\]

(5)

where we neglect the adjacency path radiance \(L_{adj,m} \) for now. In future work we plan to incorporate the adjacency effect in the retrieval over small dark targets and shadow regions where the adjacency effect dominates. The polynomial coefficients \(a, b \) and \(c \) are fitted to the total radiance over a zero ground reflectance computed by a radiative transfer code such as MODTRAN3 (Abreu et al, 1995) or 6S for the given observation geometry and assumed atmospheric conditions.

\[
R_{APDA}(PW) = \frac{L_{m} - (aPW^2 + bPW + c)}{w_{r1}(L_{r1} - L_{p,r1}) + w_{r2}(L_{r2} - L_{p,r2})}.
\]

(6)

The following iterative procedure can be used to compute the water vapor \(PW(j,k) \) for pixel \((j,k)\):

1. Use a radiative transfer code (6S or MODTRAN 3) to compute the path radiance \(L_{p,m} \) for a zero reflectance background as a function of water content and fit a polynomial (eq.(5)) and \(L_{p,r1} \) and \(L_{p,r2} \) which are assumed to be independent of \(PW \).

2. Use a spectral radiative transfer code (6S or MODTRAN 3) to compute the total radiance over a zero reflectance background as a function of water vapor \(PW \). Since the ratio \(R_{APDA}(PW) \) decreases monotonically with increasing water vapor a spline interpolation is used to go from a given ratio to columnar water vapor.

3. Assume as a starting value an average water vapor \(PW_1 \) for the whole scene.

4. Compute \(R_{APDA}(j,k) \) for each pixel \((j,k)\) using equation (6) and use the cubic spline interpolation to get a second estimate \(PW_2(j,k) \) for the columnar water vapor.

5. Substitute \(PW_2(j,k) \) for \(PW \) the right side of equation (6) to get a better atmospheric pre-corrected differential absorption ratio \(R_{APDA}(j,k) \).

2
6. Determine from the second ratio $R_{APDA}(j, k)$ a third water vapor amount $PW_3(j, k)$ using the cubic spline interpolation.

7. Repeat steps 5 and 6 a few times or until $|PW_i(j, k) - PW_{i-1}(j, k)| \leq 10^{-4}$.

We have compared this iterative technique with the optimum solution where we assume the water vapor is known exactly and the iterative solution performs within a 0.5% of the optimal solution for the 6S generated data set (see section 4).

The continuum interpolated band ratio (CIBR) by contrast is defined as:

$$R_{CIBR} = \frac{L_m}{w_1 L_{r1} + w_2 L_{r2}}$$ \hspace{1cm} (7)

If we assume that the ground reflectances $\rho_{g,i}$ are very low, equation (7) reduces to:

$$R_{CIBR}(\rho_{g,i} \approx 0.) \approx \frac{L_{p,m}(PW)}{w_1 L_{p,r1} + w_2 L_{p,r2}}.$$ \hspace{1cm} (8)

Since $L_{p,r1}$ and $L_{p,r2}$ are constant, the CIBR is then proportional to the water vapor dependent path radiance $L_{p,m}(PW) = L_{h,m}[1 - T_m(PW)]$ which is no longer proportional to $T_m(PW)$. When the background reflectance is high, equation (7) reduces to:

$$R_{CIBR}(\rho_{g,i} \approx 1.) \approx Const \, T_m(PW).$$ \hspace{1cm} (9)

Thus only for high background reflectances is the CIBR proportional to $T_m(PW)$ and thus can be used to retrieve water vapor.

3 Comparisons of the CIBR and APDA Ratios for a Fixed Water Vapor Amount

To test equations (6) and (7) we computed irradiances, transmissions and path radiance (with MODTRAN3 using the DISORT option). The atmospheric state was mid-latitude summer, visibility of 23 km and the columnar water vapor was fixed at 2.4 g/cm². The target height was at 0.4 km, the Sun at 40 degrees with approximately 1 nm spacing. The ground reflectances $\rho_{g,1}$ and $\rho_{g,2}$ was changed from 0.05 to 1 in steps of 0.05 on both sides of the spectral range $(\lambda_{\text{min}(r1)}, \lambda_{\text{max}(r2)})$ which is defined as the minimum and maximum wavelengths of channels $r1$ and $r2$. The following formula is used to create the various reflectance background spectra:

$$\rho_{g}(\lambda) = \rho_{g,1} + \frac{\rho_{g,2} - \rho_{g,1}}{\lambda_{\text{max}(r2)} - \lambda_{\text{min}(r1)}} \lambda - \lambda_{\text{min}(r1)}.$$ \hspace{1cm} (10)

The selected optimum AVIRIS bands (55, 62 and 68) have the following full-width-half-maximum $r1$: 0.869-0.879 μm, m: 0.936-0.946 μm and $r2$: 0.994-1.004 μm (see paper in these proceedings: Schläpfer et al, 1996). From figure 1 it seems that the APDA is less sensitive to reflectance variations than the CIBR for both spectral cases.

Using broader bands, e.g. in a future multispectral sensor such as MODIS, the simulation shows similar results. The selected bands are $r1$: 0.86-0.89 μm, m: 0.91-0.97 μm and $r2$: 0.99-1.04 μm. In figure 1 we show a scatterplot of all computed CIBR and APDA ratios as a function of the band-averaged reflectance in channel 2. Note the large range for the CIBR compared with the APDA techniques. Also the CIBR maps low reflectances ($\rho_{g,m} < 0.2$) to higher ratios, whereas the APDA maps all reflectances to an almost constant ratio. There is still a residual effect visible from reflectance slopes (markers forming lines with positive slopes) which could be corrected as well. The influence of reflectance slopes is similar for the CIBR and the APDA. The ratios or quasi water vapor transmittances for the AVIRIS case are much lower than for the multispectral case because the AVIRIS channel selected lies in a deep water absorption feature. Note that we have not yet investigated how the APDA technique depends on atmospheric conditions (aerosol loading, etc), calibration errors and radiative transfer code uncertainties.
Figure 1: Water vapor ratios as a function of band-averaged ground reflectance of channel 2 for a 10 nm bandwidth instrument (AVIRIS) and a multispectral instrument using Duntley’s model.

4 Comparisons of the CIBR and APDA Ratios for Variable Water Vapor and 379 Reflectance Spectra

To test the behavior of CIBR and APDA techniques over spectrally varying backgrounds we performed a simulation. Existing reflectance spectral data bases for 165 (Grove et al, 1992) and 25 (Kruse et al, 1992) minerals and 64 other spectra of natural and man-made materials were used as background. Since leaves contain significant amounts of water, a data base for 125 simulated leaf reflectance and transmittance spectra with variable leaf water content (0.0046 to 0.0405 cm) was created using the PROSPECT REDUX (Jacquemoud et al, 1995). The radiosity method was then used to compute canopy spectra of a 20-layer canopy with a total leaf area index (LAI) of 5. (Borel et al, 1990).

All 379 reflectance spectra were resampled at 2.5 nm spacings. The radiative transfer code 6S (Vermote et al, 1994) was used to compute the TOA radiance over the water vapor band centered on 940 nm. The water vapor amounts ranged from 0.05 to 5 g/cm² in 12 steps. The atmosphere had a constant visibility of 20 km with continental aerosols. The target height was set at sea level and the sensor located above the atmosphere. Only the data for water vapor amounts ≥ 1 g/cm² was used in the following analysis. Figure 2 shows the RMS relative error in percent:

\[
e(\text{PW}_j) = 100 \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{PW}_{j,i,\text{true}} - \text{PW}_{i,\text{est}}}{\text{PW}_{j,i,\text{true}}} \right)^2}
\]

in water vapor for all \(N = 379\) reflectance spectra as a function of water vapor. The four different techniques are:

1. CIBR: Original CIBR equation (7).

2. APDA: Regular APDA equation (6) using a fixed water vapor amount of 3 g/cm² to compute the path radiance \(L_{p,m}\).

3. APDA (optimal): Equation (6) with computed water vapor dependent path radiance \(L_{p,m}(PW)\).
Figure 2: RMS relative error $e(PW_j)$ in % in water vapor for all 379 reflectance spectra as a function of water vapor for four different water vapor retrieval techniques.

4. APDA (iterative): Equation (6) with the iterative scheme (5 iterations) described in section 2.

To compare the various water vapor retrieval techniques we defined a measure similar to a quasi signal to noise ratio (SNR):

$$SNR(R_x(PW)) = \frac{\bar{R}_x(PW_{\min}) - \bar{R}_x(PW_{\max})}{\sigma(R_x(PW))},$$

where $x = \{CIBR, APDA, APDA(\text{optimal}), APDA(\text{iterative})\}$,

where $PW_{\min} = 1 \text{ g/cm}^2$ and $PW_{\max} = 5 \text{ g/cm}^2$ are the minimum and maximum water vapor contents, $\bar{R}_x(PW)$ denotes the average over $R_x(PW)$, $\sigma(R_x(PW))$ denotes the standard deviation over $R_x(PW)$. Table 1 shows the minimum and maximum SNR for four retrieval techniques.

Table 1: SNR comparison

<table>
<thead>
<tr>
<th>Retrieval Technique</th>
<th>AVIRIS</th>
<th>Multispectral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range of R</td>
<td>$SNR_{min/max}$</td>
</tr>
<tr>
<td>CIBR</td>
<td>0.243</td>
<td>0.01607</td>
</tr>
<tr>
<td>APDA</td>
<td>0.253</td>
<td>0.00604</td>
</tr>
<tr>
<td>APDA (optimal)</td>
<td>0.245</td>
<td>0.00496</td>
</tr>
<tr>
<td>APDA (iterative)</td>
<td>0.246</td>
<td>0.00497</td>
</tr>
</tbody>
</table>

Next we compare the retrieval methods by setting thresholds at $\pm 5\%$ and $\pm 10\%$ RMS relative water vapor and counting the number of spectra which indicates how robust the retrievals are over many different backgrounds. Table 2 summarizes the results obtained for all 379 background spectra using the four above described techniques.
Table 2: Percentage of reflectance spectra above 5% and 10% RMS Relative Water Vapor Error

<table>
<thead>
<tr>
<th>Retrieval Technique</th>
<th>AVIRIS 5%</th>
<th>Multispectral 5%</th>
<th>AVIRIS 10%</th>
<th>Multispectral 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIBR</td>
<td>35.3562</td>
<td>32.9815</td>
<td>9.49868</td>
<td>13.1926</td>
</tr>
<tr>
<td>APDA</td>
<td>8.17942</td>
<td>21.1082</td>
<td>1.84697</td>
<td>3.16623</td>
</tr>
<tr>
<td>APDA (optimal)</td>
<td>8.70712</td>
<td>20.3166</td>
<td>2.37467</td>
<td>3.43008</td>
</tr>
<tr>
<td>APDA (iterative)</td>
<td>7.91557</td>
<td>20.3166</td>
<td>1.84697</td>
<td>3.16623</td>
</tr>
</tbody>
</table>

Figure 3 shows a scatterplot of the relative water vapor errors over 379 backgrounds as a function of band-averaged ground reflectance. The result is that the CIBR has large water vapor errors for low ground reflectance and the regular and iterative APDA work better at low reflectance levels. The AVIRIS case has fewer reflectance spectra above the ±10% limit than the multispectral approach, as is also evident from Table 2. In both scatterplots the simulated vegetation spectra show up as two clustered sets of points along two lines between reflectances 0.55 and 0.66. The water vapor error is negative because vegetation has a water absorption feature which increases the apparent water vapor in the atmosphere causing a negative error in the estimated atmospheric water vapor. This feature could potentially be exploited to estimate canopy water content. Some of the materials which the iterative APDA had relative water vapor errors of more than ±10% are listed below in Tables 3 and 4.

Table 3: Materials with RMS Relative Water Vapor Errors > 10% (AVIRIS Case)

<table>
<thead>
<tr>
<th>Material</th>
<th>ALBEDO</th>
<th>CIBR</th>
<th>APDA</th>
<th>APDA (optimal)</th>
<th>APDA (iterative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMMINGTONITE-IN-6A (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>FAYALITE-NS-1A (dark) (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>MOLYBDENITE-S-11A (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>TRIPHYLITE-P-4A (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
</tbody>
</table>

Table 4: Materials with RMS Relative Water Vapor Errors > 10% (Multispectral Case)

<table>
<thead>
<tr>
<th>Material</th>
<th>ALBEDO</th>
<th>CIBR</th>
<th>APDA</th>
<th>APDA (optimal)</th>
<th>APDA (iterative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHOPHYLLITE-IN-8A (non-linear)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>BUDDINGTONITE-NHB2301</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>DICKITE-PS-3A (dark) (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>FAYALITE-NS-1A (dark) (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>MOLYBDENITE-S-11A (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>TOURMALINE-DRAVITE-S-CS-1A (dark) (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
<tr>
<td>TRIPHYLITE-P-4A (sloped)</td>
<td>0.555</td>
<td>0.356</td>
<td>0.179</td>
<td>0.181</td>
<td>0.179</td>
</tr>
</tbody>
</table>

A spectrum was classified as 'dark' if the average reflectance in channel \(m \) was below 0.1. A spectrum was considered 'sloped' if the absolute of the normalized difference:

\[
R_{\text{slope}} = \frac{|\rho_{g,r1} - \rho_{g,r2}|}{\rho_{g,r1} + \rho_{g,r2}}
\]

between the channel averaged reflectances of channels \(r1 \) and \(r2 \) exceeded 0.05. A spectrum was considered 'non-linear' if the ratio:

\[
R_{\text{non-linear}} = \frac{\rho_{g,m}}{w_1\rho_{g,r1} + w_2\rho_{g,r2}}
\]

was less than 0.95 or greater than 1.05.

5 Conclusions

An efficient technique to determine the amount of columnar water vapor has been derived from a modified radiative transfer equation. The technique seems to work much better than the current CIBR techniques which neglect the effects of path radiances. We show how the CIBR and APDA behave over dark, bright and
Figure 3: Relative water vapor errors over 379 backgrounds as a function of band-averaged ground reflectance for a 10 nm bandwidth instrument (AVIRIS) and a multispectral instrument. Note the lined up points near 0.6 reflectance are from canopy spectra.
spectrally variable backgrounds. A large number of mineral, man-made and simulated vegetation spectra were used and the relative water vapor error lies within ±5% for most reflectance spectra. We think this accuracy is sufficient for current applications since sensor calibration and modeling errors are estimated to have similar relative errors. A challenge remains to determine water vapor over dark surfaces such as water since the path radiance is now the only quantity containing information about the water vapor. More work is also needed to retrieve water vapor in rough terrain. The presented techniques may also be useful to retrieve other gases such as CO₂ and O₂.

6 Acknowledgments

This work has been funded by NASA HQ’s Remote Sensing Science Program and the Department of Energy. The principal author acknowledges many fruitful technical discussions with and work done by Veronique Carrère (ISPRA, Italy), Jennifer Johnson (summer student at LANL in 1995) and Bill Clodius (LANL). James Theiler (LANL) reviewed the paper very carefully.

7 References

Grove C.I., Hook S.J. and Paylor E.D., 1992, Spectral Reflectance of Minerals 0.4 to 2.5 Micrometes, JPL Publication 92-2.

