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ABSTRACT 

. .. We present the W-transform for a multiresolution signal decomposition. One of the differences between the 
wavelet transform and W-transform is that the W-transform leads to a nonorthogonal signal decomposition. 
Another difference between the two is the manner in which the W-transform handles the endpoints (boundaries) 
of the signal. This approach does not restrict the length of the signal to be a power of two. Furthermore, i t  
does not call for the extention of the signal thus. the W-transform is a convenient tool for image compression. 
We present the basic theory behind the W-transform and include experimental simulations to demonstrate its 
capabiIities. 
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1 INTRODUCTION 

The concept of muitiresolution signal decomposition has received considerable attention in the research com- 
munity over the past several years. This type of signal decomposition scheme has proved useful in a variety of 
applications, especially in signal compression and coding. One reason for its widespread use in signal compression 
is that each resulting frequency band or subband of the decomposition can be quantized and encoded indepen- 
dently from all the other subbands. The corresponding quantization error in each subband is then constrained 
to that particular band in the reconstruction of the signal.' Another reason is that the frequency bands can be 
matched to some of the properties of the human visual system. Thus, each band can be quantized based on its 
relative importance to the visual system. Finally, such decompositions can be implemented efficiently by using a 

- pyr&nidal algorithm. 

The traditional approach to multiresolution signal decomposition leads to an orthogonal wavelet representation 
of the signaL2 This wavelet representation has been related to an infinitely iterated two-band filter bank, where 
the low-pass version of the signal at each stage is split into two bands. Combined with additional work by 
Daubechies3 and VetterIi,* this decomposition technique has evloved into an efficient image compression s ~ h e m e . ~  
However, to ensure proper implementation of this scheme, certain assumptions and constraints must be enforced. 
First, the input image is assumed to be infinite in length, which requires some method of signal extension (e.g., 
symmetric or period&-). Second, the filter coefficients are assumed to form an orthonormal basis. Third, the 
length of the input image is assumed to be a power of two. Finally, an additional regularity or smoothness 
property is placed on the filter coefficients. This property ensures that in the limit, the filter coefficients lead 
to a continuous wavelet function. Although techniques have been developed to satisfy these a s ~ u m p t i o n s , ~  such 
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Figure 1: Irregular (octave-band) tree structure filter bank: (a) analysis section (b) synthesis section. 

techniques usually impose heavy constraints on the filter design method. 

In this paper we describe the W-transform to obtain a multiresolution signal decomposition.6 This allows for a 
broader class of finite impulse response (FIR) filters possessing perfect reconstruction to be used in multiresolution 
analysis. Unlike the wavelet transform, no assumption is made on the orthogonality of the filter coefficients, and 
the W-transform in general leads to a nonorthogonal multiresolution analysis. Also, this approach does not restrict 
the length of the image to be a power of two, nor does it call for any signal extension. Thus, the W-transform 
becomes a convenient tooi for image compression. The regularity property is maintained in the W-transform to 
allow for smooth approximations to the original image. 

2 FILTER BANKS AND WAVELETS 

This section is not intended to be an exposition on filter banks and wavelets. For our analysis we are concerned 
with their basic properties and structures. For a more detailed explanation, the works of other authors can be 
c o n s ~ l t e d . ~ ~ ~  In our analysis. the image is filtered assuming separability, so we will present the results for the 1D 
case only. 

2.1 Filter Structure 

Consider the diagram in Figure la of an irregular tree structure filter bank. In the diagram, h and g represent 
low- and high-pass analysis filters, respectively. Only the low-pass output signal is further split into two bands, 
which is shown here for a three-level decomposition. In the frequency domain this tree structure leads to unequal- 
sized frequency bands anhis sometimes referred to as an octave-band subband tree s t r u ~ t u r e , ~  where a t  each 
level the low-pass signal represents a blurred version of the originai signal and the high-pass signal represents the 
detail (edge) information. We also note that the filter bank is critically sampled, since the decimation factor (2) 
is equal to the number of subbands a t  each level. 

This octave-band tree structure is also used to perform an orthogonal wavelet decomposition." Observe 
that as we travel down the tree, the subband bandwidth a t  each stage decreases, while the corresponding time 
function width increases. That  is, for a large number of decomposition levels we increase the frequency resolution 
and decrease the time resolution, and vice versa. This  fundamental time-frequency trade-off is what the wavelet 
transform offers in a signal decomposition scheme. The property that sets the wavelet transform aside from the 
subband coding techniques is the manner in which the filter coefficients are selected. Apart from this difference, 
the two techniques are essentially equivalent. In our analysis, the W-transform also uses this type of filter bank 



structure; here, the focus will be on the properties of the filter coefficients. 

2.2 Filter Properties 

In this section we discuss some properties of the filter coefficients used in the implementation of the wavelet 
transform. Note that these coefficients could also be used in subband coding systems. One property the filter 
coefficients can possess is that of perfect reconstruction (PR). This ensures that after the synthesis operations 
(assuming no quantization), we can reconstruct the original signal without any aliasing or distortion. PR is a 
standard property in most subband coding systems, although there are some cases for which this property does 
not hold." 

Another property is orthogonality. In this context, orthogonality means that the analysis and synthesis filters 
are the same. From Figure 1, this means implies that h = and g = j. In most subband coding systems, 
orthogonality is not critical to the operation of the system, although in the filter design method only one set of 
filters needs to be determined. This type of filter bank is sometimes referred to as a paraunitary filter bank.1° 

Linear phase is another desired property. Although both Iinear phase and orthogonality cannot be realized 
simultaneously, having linear phase filters ensures that the decomposition does not result in any nonlinear phase 
distortions of the signal. 

Finally, we consider the property of r e g ~ l a r i t y . ~  Previously, the concept of regularity was not an explicit design 
criterion for subband systems; however, it is an important criterion for the design of wavelet filters. Regularity 
has been shown to be related to the number of zeros located at t = -1 on the unit circle. In the next section, 
we show how the filter bank in Figure la leads to an orthogonal wavelet decomposition. This will be followed by 
the description of the W-transform. 

3 W-TRANSFORM 

3.1 Analysis of Filter Bank 

Before we present the theory behind the W-transfrom, we follow the the procedure as described by Vetterli 
and Herley4 for the analysis of the filter bank in Figure la. Assuming the input 2: is infinite and h and g are FIR 
filters, we can write the filter matrices H and G as 
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and 

G =  

QN-1 QN-2 . . .  91 go 
gN-1 QN-2 . . .  91 90 

QN-1 QN-2 . . .  91 9 0  

where H and G are infinite in length. The rows of H and G are shifted over by two because of the decimation 
operation. If h and g are assumed to form an orthonormal set, then 

and 
HH* = I 

G G ~  = I ,  

where I is the identity matrix and the superscript T represents transposition. Also, we have that 

G H ~  = 0. 

(3) 

(4) 

(5) 

Therefore, H and G are orthogonal t o  each other; and thus they span two disjoint signal spaces. Furthermore, 
the inverses of H and G are H-' = and G-l = GT. The projection of x onto the subspace spanned by H 
and G is given by Hx and Gx, respectively. Since the projections of x are onto two orthogonal subspaces, we 
have that 

v-1 = Vo$Wo, 

where V-1 is the original signal space, VO is the subspace spanned by H, and WO is the subspace spanned by G. 
This is equivalent to filtering x a t  the first level of the filter bank. By iterating this procedure for subsequent 
levels, we obtain 

vj c 6-1, j = 0 , 1 , .  . ., 
and 

(9) 

where j is the number of decomposition levels. This particular type of decomposition of the signal space V-1 has 
been shown to be an orthogonal multiresolution signal decomposition for discrete sequences.* Moreover, it leads 
to an orthogonal wavelet decomposition.2 Reconstruction of the signal, 2, is performed by the synthesis section 
of the filter bank in Figure Ib.  

3.2 W-matrix 

In the above discussion, we made certain assumptions about the input signal and filter coefficients. Specifically, 
we assumed the input to be infinite in length. In practical applications this assumption results in extending the 
input either periodically or symmetrically. Although the assumption of periodicity for the entire image is not 
unreasonable, assuming that all local features of an image are periodic can-be an unreasonable a s sumpt i~n . '~  
Another assumption that was made concerned the orthogonality of the filter coefficients. As a result, the filter 
matrices were orthogonal to each other, thereby leading to an orthogonal decomposition. Also, traditional wavelet 
theory assumes that the input image is a power of two (i.e, 2N x 2'). 



Figure 2: Vector diagram of the W-transform 

In the case of the W-transform, we do not make any of the above assumptions. The W-transform treats the 
signals as finite and does not constrain the length to be a power of two. Note that, although we do not restrict 
the filter coefficients to form an orthogonal basis, we do not disregard the possibility. Hence, the W-transform 
leads to a nonorthogonal multiresolution signal decomposition.6 Feauveau12 also considers a nonorthogonal 
multiresolution decomposition. However, we avoid the rigorous mathematical analysis and provide a simple 
procedure for such a decomposition. This idea can be explained by considering the diagram in Figure 2. In 
the figure, S represents the signal vector, and the vector 4 (scaling function) represents an approximation to 
the signal vector S. The orthogonal component to 4 is the vector $, which represents the traditional wavelet 
decomposition. The nonorthogonal component to 4 is the vector $ w ,  which corresponds to the wavelet used in 
the W-transform. The component $0 represents the difference or the amount of information lost in using the 
nonorthogonal component. Although we have not obtained a quantitative measure for the loss in information, 
this diagram was meant to convey the concept of the W-transform. 

Now let us reconsider the filter matrix in (1) and (2). For illustration purposes. let the length of the filters h 
and g be N = 4 and let the signal, x, be an even finite length signal. Then we have that 

H =  

where the coefficients ho and h3 represent the coefficients that are excluded from the matrix because of the finite 
extension of the input. To include this coefficients in the matrix, we add them hack to the nearest neighborhood 
that is retained. Thus, we obtain the following matrix 

The G matrix is constructed in a similar fashion. Next, we interleave the rows of the H and G matrices to obtain 



the W-matrix' 

W =  

h3+h2  hl ho 
93+92 g1 go 

h3 h2 hl ho 
Q3 92 91 go 

h3 h2 hl ho 
93 g2 91 go 

h3 h2 hl ho 
93 g2 91 go 

h3 h2 h l  +ho 
Q3 9 2  91 $ 9 0  

This is considered as the even-sized W-matrix. For odd-length signals the odd-sized W-matrix is given by 

W =  

The W-transform of the signal is given by 
y = w x .  

Observe that for an odd-sized W-matrix, the resulting low-pass signal will contain one more sample than the 
high-pass signal. For either case, the length of the output is always equal to the length of the input.. For other 
techniques dealing with arbitrary-sized signals, refer to Barnard." In general, W-' # WT and the decomposition 
is not orthogonal. However, for image compression purposes, only the inverse of the transform is necessary.13 
Note that for nonorthogonal matrices, if the condition number of the matrix is large, then small data impurities 
may be present in the transformed signal. I t  turns out that the W-matrices have moderate condition numbers.6 
In the 2D case, we assume separability and apply the I D  W-transform to the rows and then to the columns of 
the image. An example of a single-level decomposed image using the W-transform is depicted in Figure 3. The 
decomposition results in four subbands. The subbands represent low-pass (upper-left), horizontal (upper-right), 
vertical (lower-left), and diagonal (lower-right) frequency information. In the analysis that follows, only the low- 
pass subband is decomposed further, which is equivalent to the decompositianperformed by the filter bank in 
Figure 1. Thus, the W-transform can also be thought of as a subband coding scheme. 

Kwong and Tang6 provide a theorem for generating the coefficients of the W-matrix. It is shown that the 
coefficients exhibit compact support of length 4 and symmetry and that the associated scaling function is relatively 
smooth. Also the corresponding wavelet has vanishing moments up to order 2. However, Kwong and Tang make 
no reference to whether or not the coefficients satisfy conditions for PR. Therefore, our goal here is to  show 
that FIR filters having PR, but not necessarily orthogonality, can be used in the W-matrix, which will lead to 
a nonorthogonal multiresolution analysis. An advantage of relaxing the orthogonality constraint is that linear 
phase filters can be used in the analysis, thereby ensuring no nonlinear phase distortions. 



Figure 3: Plane: (a) original; (b) decomposed at one level using the W-transform, which results in 4 subbands. The 
upper left subband represents a low-pass version of the original, the upper-right represents horizontal frequency 
components, the lower-left represents vertical frequency components, and the lower-right represents diagonal 
frequency components. 

4 EXPERIMENTS 

The W-transform was tested on several different monochrome images using different filter lengths and levels 
of decompositions. The subbands of the transformed image then quantized to yield a desired bit rate. Naturally, 
this process introduces quantization errors in each subband. However, by properly allocating the number of 
quantization levels (or bits), these errors can be made almost imperceivable to the human viewer. The number 
of bits per subband were allocated based on the bit allocation scheme given by Akansu and Liu.14 Once the 
bits have been allocated, the subbands are quantized by using differential pulse code modulation (DPCM) with 
uniform quantization.16 By using DPCM, the overall bit rate can be achieved while allowing the quality of the 
reconstructed image to be maintained. 

The design of the filter coefficients was  based on the spectral factorization m e t h ~ d . ~ > ' ~  This method involves 
designing a half-band low-pass prototype filter and then factoring the prototype filter into two spectral factors. 
That is, let T ( r )  represent a half-band low-pass filter and then factor T(r) as 

T ( z )  = Ho(t)H1(-z), (15) 

where H o ( z )  and H I ( % )  represent low- and high-pass filters, respectively. If T ( z )  has linear phase, the spectral 
factors H o ( z )  and H ~ ( z )  also have linear phase. Observe that because of the numerous ways to factor T ( z ) ,  Ho(z)  
and Hl(z) must be chosen with care to produce desirable frequency responses.? We considered two methods for 
the design of the prototype T ( z ) .  The first method used the Lagrange interpolation formula, and the second 
used the Parks-McClellan algorithm." Both design methods yield linear phase filters having some degree of 
regularity. The spectral factors H o ( z )  and H l ( z )  from the Lagrange method r e su l td in  even-length filters, while 
the Parks-McClellan method resulted in odd-length filters. Also, Ho(z )  and H l ( z )  satisfy the conditions for 
perfect reconstruction and in general do not satisfy the orthogonality condition." In order to keep the spectral 
factors to a reasonable amount, the length of the filters used were N = 8,lO for the Lagrange method and 
N = 9 , l l  for the Parks-McClellan method. 

5 RESULTS 

The results from the experiments are shown in Figures 4, 5 ,  and 6 .  The size of each of the original images are 
256 x 256 at 8 bits per pixel (bpp). The bit rate, number of decomposition levels, and the peak signal-to-noise 



ratio (PSNR) are given along with the reconstructed image. The PSNR is determined by 

where x is the original image and 3 is the reconstructed image. Figure 4 shows the reconstructed image of a 
two-level multiresolution decomposition. The filters used were determmed from the Lagrange method and are of 
length N = 8,lO. Figure 5 shows the reconstructed image of a three-level multiresolution decomposition using 
the filters derived from the Parks-McClellan method. The filter lengths in this case are N = 9 , l l .  Figure 6 shows 
the reconstructed image for a three-level decomposition using the filters of length N = 8, N = 10. and N = 11. 
The bit rate for all three decompositions is 1.062 bpp. All simulations were implemented using MATLAB.17 

6 DISCUSSIONS AND CONCLUSIONS 

We have presented the W-transform for a multiresolution signal decomposition. The W-transform resulted 
in a nonorthogonal decomposition of the input as compared with the orthogonal decomposition of the wavelet 
transform. The W-transform was also shown to be equivalent to an irregular tree filter bank where the input 
image is assumed to be finite and the endpoints of the image are handled as described in Section (3.2). Even 
though only even-sized images where presented in the results, a method for handling odd-sized images was also 
described in Section (3.2). Furthermore, we demonstrated that FIR filters possessing PR, which in general do not 
form an orthonormal basis, can be used as filter coefficients in the W-transform. Two methods for determining 
the filter coefficients were also given. 

The reconstructed images for bit rates in the range of 1.5 - 1.3 bpp are visually indistinguishable from the 
original images. For bit rates in the range of 1.3 - 0.75 bpp some visible distortions are noticeable. Mainly, there 
is the presence of granular noise, which is inherent in using DPCM. However, this type of visual distortion is 
much less annoying to the visual system than the blocky effects that result from conventional DCT compression 
schemes. For bit rates below 0.75 bpp, the edges of the reconstructed image start to become blurred. This is 
evident from Figure 5d. Overall, the reconstructed images using the W-transform are subjectively acceptable. 
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Figure 4: Clock: (a) original %bit image; (b) 1.5 bpp, P S N R  = 38.66; (c) 1.125 bpp, P S N R  = 37.77; and (d) 
0.75 bpp, P S N R  = 32.76. The filters used where designed using the Lagrange formula with (b), (c) of length 
N = 8, and (d) of length N = 10. The number of decomposition levels is L = 2. 



Figure 5: Plane: (a) original $-bit image; (b) 1.312 bpp. P S N R  = 36.68; (c) 1.078 bpp, P S N R  = 35.18; and 
(ci)  0.5625 Bpp, P S N R  = 26.73. The filters where designed using the Parks-McClellan method with (b), (c) of 
length N = 9 and  ( d )  of length N = 11. The number of decomposition levels is L = 3. -. 



' 

Figure 6: Car: (a) original %bit image; (11) N = 8; (c) N = 10; (d) N = 11. The bit rate, PSNR, and number of 
decomposition levels for (b) ,  (c), and  (cl) are 1.062 bpp, P S N R  = 33.03, and L = 3. 
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