Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

PDF Version Also Available for Download.

Description

This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:Eu{sup +3}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients ... continued below

Physical Description

11 p.

Creation Information

Chyu, M.K. April 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • Chyu, M.K. Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Mechanical Engineering

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:Eu{sup +3}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

Physical Description

11 p.

Notes

OSTI as DE96008940

Source

  • Advanced turbine systems (ATS) annual review, Morgantown, WV (United States), 17-18 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008940
  • Report No.: DOE/MC/29061--96/C-0670
  • Report No.: CONF-9510109--18
  • Grant Number: FC21-92MC29061
  • DOI: 10.2172/226040 | External Link
  • Office of Scientific & Technical Information Report Number: 226040
  • Archival Resource Key: ark:/67531/metadc671258

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 4, 2015, 2:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chyu, M.K. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement, report, April 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc671258/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.