Evaluation of the discrete complex-image method for a NEC-like moment-method solution Page: 5 of 12

0 10
Co / Re(k.2)
C1 /
/C2
/I

b)

.A

4-

C1
-4-

C - - s Re kp)

5 jk2 10 15

-5-
-10 -
-15-

IkV
1

, IM(k:2)

Fig. 2. Contours for evaluation of the Sommerfeld integrals: a) contours in the k2 plane, b) contours in the kp
plane, with branch cuts from k, and k2.
The remainders of the potentials after subtracting the quasistatic terms are

/0o e-ikz2(z+z')
v22 = 2 Rv(kz2) kz2 Jo(kpp)k dkp
foo e-ikz2(z+')
u22 = 2 Ru(kz2) Jo(kpp)k dkp

kz2 _ 1
Skkzk i+ kz2 k? +k3'

Ru(kz2)= kz2 -1.
kz + kz2 2.

The extracted quasistatic terms can be combined with the free space Green's function for
the image by applying the Sommerfeld identity,

o eikz2(z+z') e- jk2R1
0 kz2 Jo(kp)kp dkp = R1 '

(4)

The equations for the electric field components are then

Ev_- jwl"to 82
P 47rk2 apaz
= -jwIpo (02
z 47rk2 (az
EH_- -jWIeRo (82
47rk 8p
EH jWIiJ (18a
S4irk2 paP
EH- -jwlo8
z 47rk2 apaz

(G22 +

k1 + k2 G21

+kJ 22+ kG21) +S
+ k2 \G22 + 21 o#+ 3H
( - k2G_
+ G22- k2 G21) cosin + SP
+k G22 - k2 + G21 si 0 Sp o4
\22 k2 + k4

(5a)
(5b)
(5c)
(5d)
(5e)

where the subscripts on E or S indicate the cylindrical component of the field and the superscript
indicates a vertical electric dipole (V) or horizontal dipole on along the x axis (H). G22 and G21

3

a)

Im(kp)

where

(2a)
(2b)
(3)

-k2!
z

I
I

)+ Sp

Upcoming Pages

Here’s what’s next.

upcoming item: 6 6 of 12
upcoming item: 7 7 of 12
upcoming item: 8 8 of 12
upcoming item: 9 9 of 12

Show all pages in this report.

This report can be searched. Note: Results may vary based on the legibility of text within the document.

Tools / Downloads

Get a copy of this page .

Citing and Sharing

Basic information for referencing this web page. We also provide extended guidance on usage rights, references, copying or embedding.

Reference the current page of this Report.

Burke, G.J. Evaluation of the discrete complex-image method for a NEC-like moment-method solution, report, January 5, 1996; California. (https://digital.library.unt.edu/ark:/67531/metadc671246/m1/5/ocr/: accessed April 23, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

International Image Interoperability Framework (This Page)