The effects of oxygen-enriched intake air on FFV exhaust emissions using M85

PDF Version Also Available for Download.

Description

This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched ... continued below

Physical Description

15 p.

Creation Information

Poola, R.B.; Sekar, R.; Ng, H.K.; Baudino, J.H. & Colucci, C.P. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched intake air. During cold-phase FTP,reductions of 42% in THCs, 40% in unburned methanol, 60% in nonmethane hydrocarbons, and 45% in nonmethane organic gases (NMOGs) were observed with 25% enriched air; NO{sub x} emissions increased by 78%. Converter-out emissions were also reduced with enriched air but to a lesser degree. FFVs operating on M85 that use 25% enriched air during only the initial 127 s of cold-phase FTP or that use 23 or 25% enriched air during only cold-phase FTP can meet the reactivity-adjusted NMOG, CO, NO{sub x}, and HCHO emission standards of the transitional low-emission vehicle.

Physical Description

15 p.

Notes

OSTI as DE96009419

Source

  • Society of Automobile Engineers (SAE) international Spring fuels and lubricants meeting, Dearborn, MI (United States), 6-9 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009419
  • Report No.: ANL/ES/CP--89858
  • Report No.: CONF-960518--1
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 221904
  • Archival Resource Key: ark:/67531/metadc671122

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 16, 2015, 12:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Poola, R.B.; Sekar, R.; Ng, H.K.; Baudino, J.H. & Colucci, C.P. The effects of oxygen-enriched intake air on FFV exhaust emissions using M85, article, May 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc671122/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.