Ultrafine cement grout for sealing underground nuclear waste repositories

PDF Version Also Available for Download.

Description

Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with their host. This paper presents the results of collaborative work between Whitesell Laboratories, operated by Atomic Energy of Canada, Ltd., and Sandia National Laboratories; the work was undertaken in support of the Waste Isolation Pilot Plant (WIPP). This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. ... continued below

Physical Description

6 p.

Creation Information

Ahrens, E.H. & Onofrei, M. February 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Ahrens, E.H. Sandia National Labs., Livermore, CA (United States)
  • Onofrei, M. Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Livermore, CA (United States)
    Place of Publication: Livermore, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with their host. This paper presents the results of collaborative work between Whitesell Laboratories, operated by Atomic Energy of Canada, Ltd., and Sandia National Laboratories; the work was undertaken in support of the Waste Isolation Pilot Plant (WIPP). This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the plugging and sealing program, specifically the development and optimization of Ultrafine cementitious grout that can be injected to adequately lower excessive, strain-induced permeability in the Distributed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout whose particles are 90% smaller than 8 microns and average 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 8 microns and lowered the gas permeability of the DRZ by three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 6 microns and averaging 2 microns. This grout can be produced in the dry form at a competitive cost ready to mix.

Physical Description

6 p.

Notes

INIS; OSTI as DE96007340

Source

  • 2. North American rock mechanics symposium: tools and techniques in rock mechanics, Montreal (Canada), 19-21 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96007340
  • Report No.: SAND--96-0195C
  • Report No.: CONF-960619--2
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 228233
  • Archival Resource Key: ark:/67531/metadc671080

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 12, 2016, 8:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ahrens, E.H. & Onofrei, M. Ultrafine cement grout for sealing underground nuclear waste repositories, article, February 1, 1996; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc671080/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.