MICROSTRUCTURE OF ARTIFICIAL 45° [001] TILT GRAIN BOUNDARIES IN YBCO FILMS GROWN ON (001) MgO*

Y. Huanga, B.V. Vuchica, D.B. Buchholzb, K.L. Merklea, and R.P.H. Changb

aMaterials Science Division
Argonne National Laboratory, Argonne, IL 60439

bDept. of Materials Science and Engineering
Northwestern University

March 1996

To be submitted to the Microscopy and Microanalysis of 1996, Minneapolis, Minnesota, August 11-15, 1996.

*Work supported by the National Science Foundation Office of Science and Technology Centers, under contract #DMR 91-20000 (YH) and the U.S. Department of Energy, Basic Energy Sciences-Materials Science, under contract #W-31-109-ENG-38 (KLM).
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Microstructure of artificial 45° [001] tilt grain boundaries in YBCO films grown on (001) MgO

a Material Science Division, Argonne National Laboratory
b Dept. of Materials Science and Engineering, Northwestern University

It is well known that high-angle grain boundaries in YBa2Cu3O7-x (YBCO) show weak-link effects and behave as Josephson junctions. This kind of grain boundary junction (GBJ) has potential applications in magnetic field measurement and electronic devices. This work studies the microstructure of artificially made GBJs in YBCO films on (001) MgO and the mechanism of the boundary formation, with the goal to improve the GBJ quality and obtain a better understanding of the junctions' transport properties.

Ion-sputter-induced epitaxy is used to form YBCO films with isolated 45° [001] tilt grain boundaries. Prior to YBCO film growth the (001) MgO substrate is selectively sputtered by a low energy Ar ion beam. A portion of the substrate remains non-sputtered by protecting the surface with a patterned photoresist mask. After removing the mask, a YBCO film is grown on the substrate using pulsed organometallic molecular beam epitaxy (POMBE). Under suitable conditions single crystal YBCO c-axis films can be reproducibly obtained in both the sputtered and non-sputtered regions. The orientation between the films and the substrate has been examined by both x-ray diffraction and electron diffraction. The in-plane orientation relation is [110]YBCO// [100]MgO on the non-sputtered epitaxially polished MgO and [100]YBCO// [100]MgO on the sputtered MgO. Thus, 45° tilt boundaries are formed in the film at the boundary between the sputtered and non-sputtered substrate regions.

TEM samples are prepared by mechanical polishing and Ar ion milling. Care is taken to keep them from exposure to moisture and elevated temperature. The samples are examined in a JEOL-4000EXII and a Hitachi HF2000. Fig. 1-2 are plan-view images of the boundary. There is no second phase on the boundary except for a few Y2O3 particles often observed in YBCO films. One of the most obvious feature of the boundary is that it meanders along the boundary line defined by the photoresist. It is easy to see in dark field TEM image (fig.1) that the interpenetration between the two sides can be over 100 nm. Another important feature is the preference for asymmetric facets at which the (100) plane on one side is parallel to the (110) plane of the other side. About 70% of the boundary is formed by this kind of facet. A cross-section view of a typical boundary is shown in fig.3. At the edge of the sputtered region there is a small step formed by the ion sputtering(indicated by an arrow). The 45° boundary, indicated by the curved black line, starts about 40 nm from the edge of the sputtered region. The boundary is initially inclined but becomes practically pure tilt at a distance of 20 nm from the substrate. The vertical features at the boundary are Moiré fringes which is believed to be caused by the crystal overlap in the beam direction due to the meandering of the boundary. The fact that the GBs are free of secondary phases and formed by well connected asymmetric facets explains the relatively high critical current supported by the sputter-induced GBJs. The boundary meandering and inclination may in part be responsible for the complex behavior in the magnetic field dependence of the junction critical current.

The microstructural difference of the YBCO/MgO interfaces in the sputtered and non-sputtered regions is shown in fig. 4 and 5. The interface in the non-sputtered region is flat, sharp and free of precipitates. The periodical features indicated by arrows are caused by interfacial dislocations. Except in the immediate vicinity of the interface no distortions are observed in either sides of the interface, presumably because most of the strain caused by the lattice mismatch is relieved by the interfacial dislocations. The interface in the sputtered region, however, is relatively rough. Between YBCO film and MgO substrate there is an intermediate layer of 2-5 nm thick. Rutherford backscattering spectroscopy of the as-sputtered MgO surface indicates that the ion sputter process implants an amount of W and Ar corresponding to 0.8 and 1 monolayer, respectively, into the top 3 nm of the surface. The source of the W is the hot W filament in the Ar ion gun. High-resolution EDX confirms that W is present in the interface layer of the sputtered region. The detection of W in the interface region is significant in that it may plays an important role in the mechanism of the sputter-induced rotation discussed by Buchholz et al. The initial growth of the film may be affected by the W present in the surface layer of the MgO substrate. This is still being investigated.
References:
5. Work supported by the NSF grant #DMR 91-20000 (YH) and DOE grant #W-31-109-ENG-38 (KLM).