Structural evolution in carbon aerogels as a function of precursor material and pyrolysis temperature

PDF Version Also Available for Download.

Description

Several organic reactions that proceed through a sol-gel transition have been identified at LLNL. The most-studied reaction involves the aqueous polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde. Recently, we have shown that phenol can be added to this polymerization as a comonomer. The resultant crosslinked gels are supercritically dried from carbon dioxide ({Tc}=31{degrees}C, P{sub c}=7.4 MPa) to give resorcinol-phenol-formaldehyde (RPF) aerogels. Because RPF aerogels are composed of a highly crosslinked aromatic polymer, they can be pyrolyzed in an inert atmosphere to form vitreous carbon monoliths. The resultant aerogels are black in color and no longer transparent, yet they retain the high ... continued below

Physical Description

6 p.

Creation Information

Gross, J.; Alviso, C.T.; Neilsen, J.K. & Pekala, R.W. April 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Several organic reactions that proceed through a sol-gel transition have been identified at LLNL. The most-studied reaction involves the aqueous polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde. Recently, we have shown that phenol can be added to this polymerization as a comonomer. The resultant crosslinked gels are supercritically dried from carbon dioxide ({Tc}=31{degrees}C, P{sub c}=7.4 MPa) to give resorcinol-phenol-formaldehyde (RPF) aerogels. Because RPF aerogels are composed of a highly crosslinked aromatic polymer, they can be pyrolyzed in an inert atmosphere to form vitreous carbon monoliths. The resultant aerogels are black in color and no longer transparent, yet they retain the high porosity (40--98 %), ultrafine cell/pore size (< 50 nm), high surface area (600--800 m{sup 2}/g), and interconnected particle ({approximately}10 nm) morphology of their organic precursors. In this study, we examine the acoustic and mechanical properties of these materials as a function of precursor material and pyrolysis temperature.

Physical Description

6 p.

Notes

OSTI as DE96009706

Source

  • Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 8-12 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009706
  • Report No.: UCRL-JC--123480
  • Report No.: CONF-960401--8
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 231318
  • Archival Resource Key: ark:/67531/metadc671018

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 17, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gross, J.; Alviso, C.T.; Neilsen, J.K. & Pekala, R.W. Structural evolution in carbon aerogels as a function of precursor material and pyrolysis temperature, article, April 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc671018/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.