Imaging systems for biomedical applications. Final report

PDF Version Also Available for Download.

Description

Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. ... continued below

Physical Description

Medium: P; Size: 32 p.

Creation Information

Radparvar, M. June 6, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

Physical Description

Medium: P; Size: 32 p.

Notes

OSTI as DE96006066

Source

  • Other Information: PBD: 6 Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96006066
  • Report No.: DOE/ER/81407--T2
  • Grant Number: FG02-92ER81407
  • DOI: 10.2172/192410 | External Link
  • Office of Scientific & Technical Information Report Number: 192410
  • Archival Resource Key: ark:/67531/metadc671012

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 6, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 1, 2015, 12:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Radparvar, M. Imaging systems for biomedical applications. Final report, report, June 6, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc671012/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.