Localized dryout: An approach for managing the thermal hydrologi-cal effects of decay heat at Yucca Mountain

PDF Version Also Available for Download.

Description

For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively -- that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. ``Extended dryout`` achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. ``Localized dryout``(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wall; this ... continued below

Physical Description

8 p.

Creation Information

Buscheck, T. A.; Nitao, J.J. & Ramspott, L.D. November 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively -- that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. ``Extended dryout`` achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. ``Localized dryout``(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wall; this is done with close waste package spacing (generating a high line-heat load) and/or low-thermal-conductivity backfill in the drift. Backfill can greatly reduce relative humidity on the waste package in both the localized and extended dryout approaches. Besides using decay heat constructively, localized dryout reduces the possibility that far-field temperature rise and condensate buildup above the drifts might adversely affect waste isolation.

Physical Description

8 p.

Notes

INIS; OSTI as DE96008377

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 27 Nov - 1 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008377
  • Report No.: UCRL-JC--121232
  • Report No.: CONF-951155--93
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 219416
  • Archival Resource Key: ark:/67531/metadc670892

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 17, 2016, 1:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Buscheck, T. A.; Nitao, J.J. & Ramspott, L.D. Localized dryout: An approach for managing the thermal hydrologi-cal effects of decay heat at Yucca Mountain, article, November 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc670892/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.