1. INTRODUCTION

The AGS and the RHIC must be synchronized before bunch-to-bucket transfer of the beam. A feedback loop has been designed and an improvement has been made to the AGS phase and radial loops. In both cases, the design uses a state variable representation to achieve greater stability and smaller errors. The state variables are beam phase, frequency and radius, the integral of the difference between the radius and its reference and the phase deviation of the bunch from the synchronous phase. Furthermore, the feedback gains are programmed as a function of the beam parameters to keep the same loop performances through the acceleration cycle.

2. DESCRIPTION OF THE LOOPS

2.1 Variables and transfer functions

The main variables used to describe the system are:

- φ_b the phase of the beam with respect to the RF
- φ the instantaneous phase deviation of the bunch from the synchronous phase
- $\delta \omega_b$ the variations of the beam frequency
- δR the variations of the beam radius
- φ_s the synchronous phase
- E the total energy
- V_{rf} the accelerating voltage
- ω_{rf} the RF frequency
- f_{as} the asymptotic revolution frequency
- ξ the beam damping coefficient (all the calculations have been performed with $\xi = 0.01$).

The cavity, around which an RF feedback is closed, can be described by its pole s_c.

These variables are related by the three following transfer functions (Fig. 1) [1]:

\[
\delta \omega_b = B_\omega \delta \omega_{rf} \\
\delta R = R_\delta \omega_{rf} \\
B_\varphi = \frac{s}{s^2 + 2\xi \omega_s s + \omega_s^2}.
\]

with:

\[
\begin{align*}
B_\omega &= \frac{s}{s^2 + 2\xi \omega_s s + \omega_s^2} \\
B_\delta &= \frac{b}{s^2 + 2\xi \omega_s s + \omega_s^2} \\
\end{align*}
\]

\[
B_\varphi = \frac{ceV_{rf} \cos \varphi_s}{2\pi \beta y U E}
\]

\[
\omega_s = \omega_{as} \sqrt{\frac{2eV_{rf} \cos \varphi_s b}{E}}.
\]

2.2 The phase and radial loop

In a first approximation, we presume that the cavity transfer function is one, the beam damping term ξ is zero, and the delays of the system are neglected. The corresponding subsystem is a on Fig.1. It can be described using two state variables

\[
x_1 = \frac{R}{b} = s + \omega_s^2 U
\]

A third one, corresponding to $x_2 = x_1 = \varphi$

the integral of the difference of the radius and its reference, is introduced to force the radius to follow its reference R_0:

\[
x_3 = z = \int (R - R_0) dt.
\]

These state variables lead to the following state space representation:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix} +
\begin{bmatrix}
k_0 \\
0 \\
0 \\
\end{bmatrix} U
\begin{bmatrix}
0 \\
0 \\
-R_0 \\
\end{bmatrix}
\]

All three state variables are observed.
As the rank of the matrix
\[\begin{bmatrix} B_{bR} & A_{bR} & B_{bR} & A_{bR} & 2B_{bR} \end{bmatrix} \] is 3, it is possible to determine a feedback using pole placement [2].

An analytical expression has been found for the three feedback gains. If \(l_1, l_2 \) and \(l_3 \) are the desired poles, the three state gains are:

\[
\begin{align*}
k_R &= \frac{(l_1 + l_2 + l_3 - \omega_s^2)}{(bk_0)} \\
k_\varphi &= \frac{(l_1 + l_2 + l_3)}{k_0} \\
k_f &= \frac{(l_1 + l_2 + l_3)}{(bk_0)}
\end{align*}
\]

These expressions will allow the programming of the gain as a function of \(\varphi \).

The command is a linear combination of the state variables (Fig. 2):

\[
U = -k_R x_1 - k_\varphi x_2 - k_f x_3.
\]

Simulations have been performed using MatlabTM. The following results have been obtained with the three following desired poles: \(-7.7 \times 10^4, 10^3(-5.4-5.5j), 10^3(-5.4+5.5j)\). The reference is a 1 mm radius step.

The radius reaches its final value and the phase is brought back to zero in roughly 2 ms. The corresponding Bode plots are given in Fig. 4.

The transition jump is simulated by adding a 180° phase perturbation on the phase. The transfer function between \(\omega_t \) and \(R \) has to be made equal to zero, the transition jump having no effect on the radius (Fig. 5). After jumping to \(\pi \), the phase comes back to zero in less than 0.1 ms.

The following results have been obtained with the following desired poles: \(-7.6 \times 10^4, 10^2(-2.7+3.2j)\).
\(10^2(-2.7 - 3.2j), -1.9 \times 10^2, -7.7 \times 10^2\).

\[\text{E=3GeV} \quad \text{E=25GeV}\]

Fig. 7 Synchronization loop, response to a ramp

The corresponding Bode plots are given in Fig. 8. In both cases, the phase margin is approximately 60° and the amplitude margin 13dB.

\[\text{Fig. 8 Synchronization loop, Bode Plots}\]

3. CONCLUSION

The use of a state space representation has lead to the design of two new feedback loops. These loops should provide us with good stability, a good robustness and performance, despite the system delays. The practical realization only requires gains and summations. Moreover, the analytical expression of the feedback gains will allow the programming of these as a function of energy, so that the loops will keep the same behavior throughout the accelerating cycle.

REFERENCES

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.