A RE-EXAMINATION OF THE AUTOCATALYTIC CRITICALITY PHENOMENA

by

Cris S. Eberle,
Robert C. Singleterry Jr.,
Argonne National Laboratory - West
P. O. Box 2528
Idaho Falls, ID 83403-2528
(208)533-7371

Kenneth Olsen,
Douglas Henderson
University of Wisconsin, Madison
151 Engineering Research Building
Madison, WI 35706

1996 Radiation Protection & Shielding Division
Topical Meeting
Sea Crest Resort, 350 Quaker Rd.,
N. Falmouth MA 02556 (Cape Cod)

April 21-25, 1996
INTRODUCTION

In two recent draft publications a new phenomena referred to as “autocatalytic criticality” has been reported as a potential criticality problem for underground dry storage facilities. Much of the independent research criticizing these results has focused on the nuclear kinetics of the proposed phenomena and the actual magnitude of an underground storage facility’s total energy release. It should be noted that if the physical interpretation for the proposed autocatalytic phenomena is accurate, then both the design and analysis of underground dry storage facilities would need to account for the phenomena. Thus, more fundamental than even the system kinetics, risk or probability of an excursion event is the identification of any mechanism that could facilitate the autocatalytic phenomena. The purpose of this analysis is two fold: first, it is to discuss the analysis of the proposed autocatalytic criticality phenomena and demonstrate its limitations; second, it is to present a simple physical model that more accurately demonstrates this criticality phenomena in the more realistic setting of a porous media.

ORIGINAL AUTOCATALYTIC MODEL

The original problem applied the MCNP-4A solution on a homogeneous, finite volume sphere with an infinite reflector. The homogeneous core region contained $\mathrm{H_2O}$, $\mathrm{SiO_2}$ and $\mathrm{Pu^{239}}$ and the reflector region contained only $\mathrm{SiO_2}$. The evaluation was essentially a critical fissile concentration search as a function of the individual material components. The key to understanding the autocatalytic mechanism is in recognizing that the analysis requires the weight fractions of $\mathrm{H_2O}$ and $\mathrm{SiO_2}$ to be linearly dependent variables and this can be shown as follows. First, both the volume and density of the system are held constant which implies that the total
mass of the system is constant. With the mass of \(\text{Pu}^{239} \) held constant during an excursion, then the only trajectories allowed are along lines of constant \(\text{Pu}^{239} \) weight fraction. The consequence of this is to constrain the linear combination of \(\text{H}_2\text{O} \) and \(\text{SiO}_2 \) weight fractions as follows:

\[
f_{\text{SiO}_2} + f_{\text{H}_2\text{O}} = 1 - f_{\text{Pu}} = \text{Constant}
\]

(1)

The mathematics of this material model imply that \(\text{H}_2\text{O} \) is replaced by \(\text{SiO}_2 \) during the excursion without a constitutive relation governing the transformation. There is no obvious physical explanation for this replacement. A more realistic model would account for water evaporating while at the same time keeping the mass of the rock constant.

A SIMPLE POROUS MEDIA MODEL

For the porous media model MCNP-4A was also used to examine a homogeneous, finite volume sphere with an infinite reflector; however, both the material composition and the constitutive relations were changed in order to provide a simple and more accurate model of the mechanisms which drive the system criticality. First, a Parametric study was performed to determine the eigenvalue response as a function of material composition of the rock matrix. Rock matrix compositions included North American Bedasite, Western Granite, Sand Stone, Nevada Alluvium, Lime stone and Average Granite. These results show that residual components in the rock matrix significantly reduces the eigenvalue. Next, a simple porous media model was employed which accounted for a static porosity of the rock matrix and allowed for a homogeneous water-steam mixture density in the critical system. These results indicate that such a system can not be autocatalytic, and in fact the void coefficient is always negative.

CONCLUSIONS

The proposed autocatalytic criticality phenomena was examined and the implicit mathematical requirements of the model have been identified which explain the deficiencies of the model. A simple porous transport model was developed and used to analyze a parametric series of rock matrix types over a bounding set of expected porosities and water-steam void
fractions. The results provide a simple demonstration that the void coefficient is negative for all of the parametric cases examined. And this is the basis for proving that the autocatalytic criticality is not a concern in repository design or analysis.

REFERENCES

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.