Dispersion-reduction technique using subcarrier multiplexing

PDF Version Also Available for Download.

Description

We have developed a novel dispersion-reduction technique using subcarrier multiplexing (SCM) which permits the transmission of multiple 2.5 Gbit/s data channels over hundreds of kilometers of conventional fiber-optic cable with negligible dispersion. Using a lithium niobate external modulator having a modulation bandwidth of 20 GHz, we are able to multiplex several high-speed data channels at a single wavelength. At the receiving end, we demultiplex the data and detect each channel using a 2-GHz bandwidth optical detector. All of the hardware in our system consists of off-the-shelf components and can be integrated to reduce the overall cost. We demonstrated our dispersion-reduction ... continued below

Physical Description

10 p.

Creation Information

Sargis, P. D.; Haigh, R. E. & McCammon, K. G. October 18, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have developed a novel dispersion-reduction technique using subcarrier multiplexing (SCM) which permits the transmission of multiple 2.5 Gbit/s data channels over hundreds of kilometers of conventional fiber-optic cable with negligible dispersion. Using a lithium niobate external modulator having a modulation bandwidth of 20 GHz, we are able to multiplex several high-speed data channels at a single wavelength. At the receiving end, we demultiplex the data and detect each channel using a 2-GHz bandwidth optical detector. All of the hardware in our system consists of off-the-shelf components and can be integrated to reduce the overall cost. We demonstrated our dispersion-reduction technique in a recent field trial by transmitting two 2.5 Gbit/s data channels over 90 km of commercially-installed single-mode fiber, followed by 210 km of spooled fiber. For comparison, we substituted the 300 km of fiber with equivalent optical attenuation. We also ran computer simulations to evaluate link behavior. Technical details and field trial results will be presented.

Physical Description

10 p.

Notes

OSTI as DE96004594

Source

  • Phototonics East `95, Philadelphia, PA (United States), 22-26 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004594
  • Report No.: UCRL-JC--120809
  • Report No.: CONF-9510189--7
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 183207
  • Archival Resource Key: ark:/67531/metadc670816

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 18, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 30, 2015, 7:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sargis, P. D.; Haigh, R. E. & McCammon, K. G. Dispersion-reduction technique using subcarrier multiplexing, article, October 18, 1995; California. (digital.library.unt.edu/ark:/67531/metadc670816/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.