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Abstract. There are many approaches to geostatistical simulation that 
can be used to generate realizations of random fields. These approaches 
differ findamentally in a number of ways. First, each approach is 
inherently different and will produce fields with different statistical and 
geostatistical properties. Second, the approaches differ with respect to 
the choice of the features of the region that are to be modeled, and how 
closely the generated realizations reproduce these features. Some 
fluctuation in the statistical and geostatistical properties of different 
realizations of the same random field are natural and desirable, but the 
proper amount of deviation is an open question. Finally the approaches 
differ in how the conditioning information is incorporated. Depending 
on the source of randomness and the uncertainty in the given data, direct 
conditioning of realizations is not always desirable. In this paper, we 
discuss and iIlustrate these differences in order to emphasize the 
importance of these components in geostatistical simulation. 

INTRODUCTION 

Geostatistical simulation, as illustrated in Figure 1, provides a way to 
qu&ti@ uncertainty in the prediction of a complex system response. Some 
information is usually available on a process of interest (e.g., measurements on a 
hydrogeologic parameter of interest in a particular region), but the transfer 
h c t i o n  (e.g., a groundwater flow model) may require a detailed spatial map of 
the parameter on which the measurements were obtained. (Such a map can be 
created through spatial prediction techniques such as kriging.). The value of the 
transfer function can then be computed over the mapped values to obtain a 
prediction of a system response (e.g., groundwater travel time), but an estimate of 
the uncertainty associated with the prediction, often as important as the predicted 
value itself, is typically much more difficult to infer. One alternative is to 
generate realizations of the random field that share the available information on 
the parameter of interest and use the transfer h c t i o n  to compute a system 
response for each. If the realizations characterize the spatial uncertainty in the 
parameters of interest, the resulting distribution of predicted system responses 
will reflect this uncertainty. 
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Figure 1. Illustration of Stochastic Simulation (Joumel, 1989). 

Although originally introduced as a geostatistical approach to uncertainty analysis 
(Journel, 1989), geostatistical simulation has grown to provide a variety of new 
approaches to stochastic modeling that can incorporate complex spatial 
relationships. These methods are frequently used in hydrology, petroleum 
engineering, and the environmental sciences, not only for uncertainty analysis, 
but also for risk analysis, decision analysis, and stochastic modeling. 

Many different approaches to geostatistical simulation can be used to 
construct the realizations. For continuous variables these include the turning 
bands method (Joumel, 1974), spectral methods (Borgman et al., 1984; Gutjahr, 
1989), LU or Cholesky decomposition (Alabert, 1987; Davis, 1987), sequential 
Gaussian simulation (Journel, 1989), and fractal approaches (Hewett and Behrens, 
1990). Approaches to simulation of discrete or categorical variables include 
Boolean methods (Serra, 1982; Jeulin, 1987; Chautru, 1989) and the more general 
random closed set approaches (Stoyen et al., 1987), and the use of truncated 
Gaussian random functions (Matheron et al., 1987). Sequential indicator 
simulation (Joumel and Alabert, 1989), simulated annealing (Kirkpatrick et al., 
1983; Deutsch and Journel, 1992) and genetic algorithms (Whitley, 1994) can be 
used with both continuous or categorical variables. 

different approaches will assign different statistical and spatial features to the 
generated fields. These differences could be due to: (1) differences in the 
statistical model used to characterize the phenomenon under study. These 
differences are most blatantly represented by the criteria used to describe spatial 
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data relationships and characterize available information. We refer to such 
criteria as summaryfunctions. Examples of summary functions include the 
univariate data distribution, the covariance function, indicator semivariograms, 
and the shape and intensity of primary elements in Boolean simulations; (2) 
differences in algorithms (e.g., using sequential Gaussian simulation versus using 
LU decomposition); ( 3 )  the acceptable deviation between the summary functions 
specified to the algorithm and those calculated from resulting realizations; and (4) 
the use of conditioning information. Since all of these differences will translate 
into differences in the nature of the spatial heterogeneity reflected in the resulting 
realizations, and hence into differences in uncertainty assessments, risk 
calculations, etc., and ultimately into differences in conclusions and managerial 
decisions, it is important to consider each of these components carefully when 
using geostatistical simulation. In the remainder of this paper, we elaborate on 
these components of geostatistical simulation, discuss some of the different 
choices within each component, and illustrate the effect of these differences on 
the nature of the simulated fields and on functions derived fiom them. 

COMPONENTS OF GEOSTATISTICAL SIMULATION 

When using geostatistical simulation to characterize the spatial variation 
of parameters of interest, the modeler has to make several important choices. 
Each choice will affect the nature of the resulting realizations and the values of 
functions derived from them. Thus, careful thought with regard to the major 
components of geostatistical simulation is crucial in modeling the uncertainty of 
spatial functions. 

Choice of statistical model and selection of summary functions 

describe a multivariate probability distribution for the spatial data of interest. 
Given such a distribution, realizations can be generated by sampling randomly 
fiom this specified distribution. For example, in LU decomposition, the 
underlying multivariate distribution is Gaussian, and the parametric form for this 
distribution can be found in most introductory statistical texts. Similarly, general 
formula for the multivariate distributions of BooIean random sets, as well as 
formula for distributions of other random sets, are given in Stoyen et al., (1987). 
In other cases, such as the sequential indicator simulation model, or certain 
Markov Random Field Models, the exact form of the multivariate distribution is 
intractable or unknown, and is conditionally specified using a local neighborhood 
structure. 

specified through the use of surnm~ry functions. For example, generation of 
realizations fiom a multivariate Gaussian distribution requires specification of the 

For geostatistical simulation of a spatial process, a statistical model must 
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process mean and covariance structure which is typically determined through the 
semivariogram. In Boolean models, the multivariate distribution depends on the 
intensity of the Poisson process, the shape of the primary elements, and the 
probability distributions of their sizes. In sequential indicator simulation, the 
multivariate distribution is specified nonparametrically through the use of 
indicator seniivariograms. Consequently, using a particular simulation algorithm 
that requires a specified set of summary functions is equivalent to specifying a 
multivariate probability model for the spatial process. These models necessarily 
emphasize different spatial features of the process, so it is important to determine 
what features are most important in the application of interest and how best to 
quantify them from the available information. In applications where a transfer 
function is evaluated over the generated realizations, it is important to determine 
the features of the process that will greatly influence the value calculated through 
the transfer function. For example, in reservoir modeling, it is often important to 
characterize those features that influence the flow of fluids through reservoirs, 
and in environmental risk analysis, it may be important to characterize those 
features that control the spread of a contaminant of special interest. 

Emphasizing different features though the use of different summary 
functions can give rise to realizations that appear quite different. As an example, 
consider the top image in Figure 2. It shows a geologic section (obtained from 
digitization) of interbedded debris flow (fine grained) and sheet flood (coarse 
grained) units produced as part of site-characterization studies at the Greater 
Confinement Disposal Facility in Southern Nevada (Rutherford and Gotway, 
1994; McCord et al., 1996). Recharge through sections of this type is an 
important component of such studies and the position, shape, and amount of each 
type of unit are important for modeling vadose zone flow. The last three images 
in Figure 2 are unconditional realizations generated from statistics inferred from 
the training image using sequential indicator simulation, Boolean simulation, and 
a more general random set approach. Sequential indicator simulation uses two 
summary functions, the proportion of debris flow and the indicator 
semivariogram. The indicator semivariogram attempts to incorporate the 
connectivity of the permeable and impermeable zones. Although the shape of the 
debris flow units can be controlled to some degree by the anisotropy reflected in 
the indicator semivariograms, the shapes are somewhat limited. The Boolean 
model uses summary hct ions  that specifL the intensity of the process, and the 
shape and size of the debris flow units. Here the emphasis is on shape, rather than 
connectivity. The last realization is based on the theory of random closed sets 
(Kendall, 1974). In this application the summary functions are described by a 
system of structuring elements, and any random set can be characterized through 
its intersection with these elements. The last realization was generated using 19 
structuring elements consisting of lines, triangles and rectangles. Here there is an 
attempt to account for both shape and connectivity. 
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Figure 2. The Use of Different Summary Functions in Lithologic Simulation. 



The use of multiple-point statistics (Deutsch and Journel, 1992; Guardian0 and 
Srivastava, 1993;), might also be used to incorporate more features of importance. 
Note that in such applications, the goal is not to reproduce the training image, but 
to capture essential features of the image (not always visible by eye) that are most 
important to the transfer function of interest. 

Choice of Simulation Algorithm 

determine the modeling approach, different algorithms for generating the 
realizations often impact the results. In implementing most geostatistical 
simulation algorithms, there are a number of parameters that must be made 
specific, often based on a tradeoff between speed and accuracy. Examples 
include the number of turning bands lines, the number of conditioning values 
retained in sequential simulation, the choice of annealing schedule and 
convergence criteria, and the number of structural elements in random set 
generation. In many cases, blatantly improper choices can be clearly reflected in 
the realizations, e.g., the appearance of banding effects in turning bands method 
when the number of lines is small. In other cases, apparently reasonable 
selections can also have an effect on the realizations and on the resulting 
uncertainty distributions derived from them. In a comparative study of several 
geostatistical simulation algorithms using a variety of exhaustive data sets and 
transfer functions, Gotway and Rutherford (1994) illustrate these algorithmic 
differences. Figure 3 shows the uncertainty distribution of the average of local 
geometric means computed from conditional realizations of a Gaussian field. 
Although the shape of the uncertainty distributions is similar, they differ in the 
upper tail which could be crucial for risk assessments. Comparing the 
distributions obtained using LU Decomposition, Sequential Gaussian, and 
Turning Bands algorithms shows the effect of algorithmic differences on the 
response uncertainty distributions. Comparing the distribution obtained using 
sequential indicator simulation to the others illustrates the effect of choice of 
summary functions. As shown in Gotway and Rutherford (1 994), these 
differences are much more pronounced for unconditional realizations. 

In addition to the selection of an appropriate set of summary be t ions  that 

The Acceptable Deviation 

functions calculated from realizations and that specified by the model. For 
example, should the variogram calculated from each realization exactly match the 
variogram specified? Certainly, the answer to this question is no, since, in 
simulation, some deviation of summary functions is desirable in order to reflect 
uncertainty. However, the amount of deviation acceptable is an open question. 
Unless there is “post-generation” alteration to the realizations, these deviations 
depend on the specified summary functions and on the simulation algorithm. 
Often, simulation algorithms are compared and evaluated based on their ability to 
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reproduce the desired functions over an average of realizations. However, the 
variability in the summary functions can be quite different depending on the 
particular algorithm used and still, on the average, reproduce the specified 
summary functions. More importantly, such a reproduction assumes that the 
summary functions specified are in fact known, when in reality they are estimated 
from available data. 
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Figure 3. Response Uncertainty Distributions. 

The fundamental concern with the acceptable deviation is that differences 
between specified summary functions and those calculated fkom generated 
realizations should reflect: (1) the uncertainty in input summary functions; (2) the 
natural variability that comes with random spatial sampling over a finite region to 
generate realizations, and not (3) the variability (or lack of variability) introduced 
by the simulation algorithm. None of the available algorithms account for (1 1, 
and with the exception of algorithms in which a multivariate distribution is 
directly sampled (such as LU decomposition) it is also not clear whether (2) is 
accomplished correctly. For many applications, (3) may be the primary 
determinate of deviations between summary functions. 



The Use of Conditioning Information 
Conditioning a simulation on known values or soft information 

(incomplete information concerning the region of interest) must be done in a way 
that reflects the true conditions imposed on the simulated region by that data or 
information. At present, the common approach for algorithms using a sequential 
method of generation is to treat previously generated values as known data values 
in the simulation. The study in Hansen (1 992) indicates that this approach might 
“over-condition” or “under-condition” the realizations. The result is a biased 
uncertainty distribution of response that may be unrealistically wide or too 
narrow. Moreover, if data are measured with error, conditioning on these data 
may not be warranted; rather some filter must first be applied to reduce the noise 
introduced by measurement error. 

In many applications, the summary functions are derived from a training 
image, and simulation of complex geologic structures is often based on a training 
image that is derived from outcrop mapping (e.g., Figure 2). However, the goal 
of simulation is not to reproduce a training image. Rather, the objective is to 
generate realizations that account for information believed relevant to the general 
process under study. Such information might include the general shape and 
relative distributions of important units, connectivity patterns, cyclic trends, etc., 
that could be expected to be general properties of the process. It most probably 
does not include exact values obtained from the training image. In fact, 
Guardian0 and Srivastava (1 993) note that “the training image is itself is the 
underlying phenomenon. It is assumed, however, that both share some structural 
properties such as specific multiple-point covariances.” Consequently, it seems 
very difficult to justify using the exact values (or even some randomly selected 
subset of them) as conditioning information. 
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