Third-order elastic solution of the stress field around a wellbore

PDF Version Also Available for Download.

Description

Within a certain range of strain, consolidated granular materials may be characterized as nonlinear elastic solids. The nonlinearity can be easily observed by examining the effect of stress on the acoustical properties of the material. Ignoring damage evolution and failure that occur in higher strains and the hysteretic behavior due to intercyranular friction, the material can be modeled as a nonlinear hyperelastic solid. A simple example of such a model is formulating the strain energy as a third-order polynomial of the strain invariants. This model is limited in the sense that the material is assumed to be isotropic with respect ... continued below

Physical Description

18 p.

Creation Information

Elata, D. April 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Within a certain range of strain, consolidated granular materials may be characterized as nonlinear elastic solids. The nonlinearity can be easily observed by examining the effect of stress on the acoustical properties of the material. Ignoring damage evolution and failure that occur in higher strains and the hysteretic behavior due to intercyranular friction, the material can be modeled as a nonlinear hyperelastic solid. A simple example of such a model is formulating the strain energy as a third-order polynomial of the strain invariants. This model is limited in the sense that the material is assumed to be isotropic with respect to the stress free state, and that the mechanical response of the material is described by only five material constants. Nevertheless, this model is appealing because it naturally exhibits stress dependent stiffness and stress induced anisotropy, and it allows a different mechanical response to positive and negative volume changes. In this work, this model is used to calculate the stress field around a wellbore. Many well logging tools use acoustics (e.g., tube, surface, torsion, and flexural waves) to detect pore fluids and ore in the surrounding granular rock. By modeling the rock as an isotropic third-order elastic material the effects of the inhomogeneous stiffness and the stress induced anisotropy may be examined. Analysis of the tangential stress around a wellbore in an isotropic third-order elastic (TOE) material yields different results than the same analysis in the related isotropic linear elastic (LE) material (i.e., both materials have the same stiffness tensor at the stress free state). This difference modifies the far-field stress that is interpreted of from hydraulic fracturing data. The analysis in the present work is static and pore fluid effects are ignored.

Physical Description

18 p.

Notes

OSTI as DE96012215

Source

  • 7. international workshop on seismic anistropy, Miami, FL (United States), 19-23 Feb 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96012215
  • Report No.: UCRL-JC--124058
  • Report No.: CONF-9602105--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 249289
  • Archival Resource Key: ark:/67531/metadc670591

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 23, 2016, 3:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Elata, D. Third-order elastic solution of the stress field around a wellbore, article, April 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc670591/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.