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BAYESIAN INFERENCE AND THE ANALYTIC CONTINUATION 

OF IMAGINARY-TIME QUANTUM MONTE CARLO DATA 

J. E. GUBERNATIS AND J. BONCA 
Theoretical Division, Los Alamos National Laboratory 
Los Alamos, NM 87545, U.S.A. 
AND 
MARK JARRELL 
Department of Physics, University of Cincinnati 
Cincinnati, OH 45221, U.S.A. 

Abstract. We present a brief description of how methods of Bayesian inference 
are used to obtain real frequency information by the analytic continuation of 
imaginary-time quantum Monte Carlo data. We present the procedure we used, 
which is due to R. K. Bryan, and summarize several bottleneck issues. 
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1. Introduction 

Most often, discussions about the application of methods of Bayesian inference 
focus on the choice of prior probabilities. The choice of the likelihood function is 
usually viewed as less problematic. Typically, the natural choice is that of Gaussian 
distribution. In this paper, we will discuss a successful application of the methods 
of Bayesian inference to the problem of the analytic continuation imaginary-time 
data obtained from quantum Monte Carlo simulations. Here, a “natural” choice of 
the prior probability was the entropic prior. The choice of the likelihood function 
as a Gaussian distribution was an unnatural one but the only workable one. 

The analytic continuation problem is a very ill-posed one. It amounts to nu- 
merically performing an inverse, two-sided Laplace transformation of noisy and 
incomplete data. Bayesian methods are used to develop a procedure to regularize 
the problem. A major difficulty in achieving success was overcoming the naturally 
non-Gaussingly-distributed data produced by the simulation. To achieve such a 
Gaussian distribution, large amounts of data were produced to force the central 
limit theorem to hold approximately. Experience shows that unless the data used 
as input to the analytic continuation problem consistent with the procedures used 
to perform the continuation, then unsatisfying, and often incorrect, results follow, 
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While the need for such consistency in retrospect seems obvious, it was overlooked 
in several of the initial numerical approaches to the problem. 

In what follows, we first will summarize and define the problem of the analytic 
continuation of imaginary-time quantum Monte Carlo data. Next, we will state 
the Bayesian approach we used. We simply borrowed a procedure proposed by 
Bryan [l]. In this context, we will give several illustrations showing why both the 
generation and statistical quality of the data can be bottleneck issues. We conclude 
with a summation. We comment that recently two of us wrote a review article that 
details our methods and procedures [2]. 

2. The Analytic Continuation Problem 

For finitetemperature, quantum Monte Carlo simulations, the analytic continu- 
ation problem is “Given noisy and incomplete estimates for the imaginary-time 
correlation function G(r ) ,  what is the spectral density A(w)?” The imaginary- 
time correlation function (or many-body Green’s function) arises naturally in the 
field-theoretic approach to quantum many-body problems [3]. The analytic prop- 
erties of this approach leads to the association of a spectral density to each type of 
many-body Green’s function. The spectral density often exhibits in its structure 
(its peaks and their location) information about the subtle microscopic processes 
taking place in physical systems. Often these functions can be measured experi- 
mentally. Theoretical physicists and chemists find the computation of these func- 
tion important and useful for the physics they reveal about the physical models 
being studied and about the relevance of the models to real physical systems. 

Many-body quantum theory states [3] that G(r)  and A ( w )  are related by 

The f refers to Fermi and Bose statistics, T > 0, and is the inverse of the 
temperature. A precise definition of A ( w )  can be given in terms of the eigenvalues 
and vectors of the Hamiltonian specifying the physical system, quantities which 
are very hard to obtain in part because the number of eigenstates generally in- 
creases exponentially with the size of the system. This situation points to utility 
for a Monte Carlo simulation of the problem. Depending on the definition of G(T) ,  
A ( w )  is related to such experimentally measurable quantities as the photoemission 
spectra, optical conductivity, dynamic magnetic susceptibility, etc. These quanti- 
ties, not the real-time correlations, is usually all that is measured. 

2.1. THE PROBLEM 

The main difficulty in the analytic continuation problem is that at large positive 
and negative frequencies the kernel 
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is exponential. This condition makes G(T) insensitive to the high-frequency details 
of A(w) .  In terms of obtaining A ( w )  from G(T), this insensitivity leads to an ill- 
posed problem, and the ill-posedness implies an infinite-number of solutions exist. 
The task is to select from this infinity of solutions one that is “best” by some 
criterion. 

2.2. GENERAL FEATURES 

The spectral density satisfies 

A(#) L 0 

/ d w A ( w )  < 00 

These features allows us to interpret A ( w )  as a probability function. Often, the 
bound on the integral of the spectral density is precisely known or is computable 
by the simulation. In these cases, called sum Tules, the bound also reveals physical 
information about the problem. 

The correlation functions G(r)  satisfy 

G(T + P)  = &G(T) 

which allows us to restrict 0 5 T < p. Within this range 

G(P- T )  = G(T) 

G(T) is usually bounded from above and below. 

2.3. IMAGINARY-TIME QUANTUM MONTE-CARLO 

Quantum Monte Carlo simulations at finite temperatures are done in imaginary 
time r. The Wick rotation, it + T ,  transforms Schroedinger’s equation for a 
Hamiltonian operator H 

and its formal solution 

into 

and 

.a+ 
at 2- = HIC, 

Other operators evolve and transform as 
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The Wick rotation thus transforms oscillatory exponentids e- i tH into diffusive 
ones, e - r H .  The importance of such exponential lies with the dynamics of quantum 
mechanical systems. 

Why perform the Wick rotation? From the point of view of performing a Monte 
Carlo simulation, at long times real-time such simulations are inefficient: sampling 
on smaller and smaller times scales becomes necessary as time increases just to 
achieve proper self-cancelations. Quantum simulations, however, are readily (and 
naturally) performed in imaginary-time. 

3. A Solution Path 

The functional form of the analytic continuation problem clearly reveals its ill- 
posed nature. In general, the solution of such a problem requires a regularizer. 
In the present situation, we have the added difficulties of the estimates of G(r )  
obtained from the simulations being incomplete and noisy. They are incomplete 
because we only determine G(T) at discrete values of T .  They are noisy because of 
the nature of a Monte Carlo simulation. 

To proceed, we first convert the integral equation to a linear system of equations 

where Gi = G(rj), Kjj = K ( ~ j , u j ) ,  and Ap = A(wi)Awi.  Next, we pretend to 
consider a constrained least-squares approach, i.e., we consider seeking Ai that 
maximizes 

1 

2 
Q = a S - - x 2  

and 

C is the covariance matrix 

The G!") are statistically independent estimates of Gj S is the information theory 
entropy 

S = C[Ap - mi - Ai ln(A;/mi)] 
i 
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with mi being the default model. 
There are several things being assumed. One is the entropic prior. The ratio- 

nale for this choice follows from the observation that the possible interpretation 
of the spectral density as a probability function and the utility of the principle of 
maximum entropy for assigning probabilities. In practice, the choice is very conve- 
nient because of the ease of insuring the non-negativity of the computed spectral 
density. Another assumption is the choice of a multivariate Gaussian for the like- 
lihood function. We know of no other analytic form that fits or can be made to 
match the distribution of the data, short of mindless function fitting that most 
likely would be needed for each simulation. 

What does one chose for a? We opt for the following [l] 

(A)  = 1 DA daA(a) Pr[A, a14 
= J DA d a ~ ( a )  Pr[AlG, a] Pr[alQ 

x J d a ~ ,  p r [ a l a  

In the above, 

Pr[AIG, a] = Pr[GIA] Pr[Ala] Pr[a] 

where ZL and Zs(a)  are the normalization constants for the likelihood function 
and the prior. Also, 

Pr[alQ = IDA Pr[GIA] Pr[AIa] Pr[a] J 
= Pr[a]/DA- eQ 

ZL 2s 

To proceed, for a fixed value of a,  we solve 

to find A,. (For a given value of a ,  Q is a convex function of A;.) Then, we 
numerically perform 

A = da A, Pr[alQ s 
The functional integration over A and the integral over a are done numerically. 
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Figure 1. 
the oscillator frequency and p is the inverse of the temperature. 

The exact Green’s function as a function of T for a simple harmonic oscillator. wo is 

4. Bottlenecks 

Only for a very large number of statistically independent measurements does the 
distribution of the Monte Carlo data approach the assumed multivariate Gaussian. 
The results are very sensitive to the extent to which the central limit theorem can 
“save the day.” There several other issues regarding the data. Compared to Monte 
Carlo simulations where the analytic continuation is not an objective, the data in 
the continuation problem require a more careful statistical characterization, partic- 
ularly with respect to statistical independence. (The assumed likelihood function 
assumes statistical independence.) Also the variance of the Monte Carlo results 
needs a greater reduction. (This need is a consequence of the ill-posedness of the 
problem.) The techniques we used to statistically characterize and qualify the data 
are discussed in [2]. 

In Fig. 2, we show the exact Green’s function for a single quantum harmonic 
oscillator (or well). Those obtained from almost any simulation look like these. In 
general, some “characteristic energy scale” wo exists. When it is smaller than the 
the temperature (PWO < l), the Green’s function is flat. If one envisions error bars 
on the measured values, then a number of measurements are “within the error?’ of 
each other, and hence not all the measured data make independent contributions. 
When it is larger then the temperature (&o > l), only in a small region near 
T = 0 and by symmetry near T = ,f3 is the relative error small. Additionally, the 
smoothness of the curve implies that the different values of G(T) are correlated 
with one another. The correlation is the reason why the covariance matrix appears 
in the likelihood function. 
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Figure 2. Near T = p/Z, the Green’s function (dashed line) from Fig. 2 for the Ow0 = 10 
case compared with the results obtained by two different quantum Monte Carlo algorithms. The 
results from the non-ergodic algorithm lie below the exact result. 

In Fig. 3, we shown a portion of Fig. 2 (the dashed line) near 7- = @/2 together 
with the values of the Green’s functions computed for the same problem from two 
slightly different quantum Monte Carlo algorithms. The results which show the 
greatest deviation from the exact results were obtained with an algorithms that 
was slightly non-ergodic. We point out the reduced y-axis scale compared to Fig. 2. 
If we used in Fig. 3 the same scale as in Fig. 2, the differences between the results 
from the two simulations would be barely noticeable. Figure 4 illustrates that these 
small differences can make a big difference in the results [4]: the exact A(w) should 
be a &function positioned at 1 with a weight (sum rule) of 0.5. The result from 
the ergodic algorithm gives a peak at the right location with the right weight. The 
width of the peak will narrow as the statistical error associated with data narrows 
(Le., if more data is used). The result obtained with the other algorithm is broader 
and incorrectly placed and weighted. The breadth can be reduced by reducing the 
statistical error of the data, but this will not overcome the systematic error caused 
by the algorithm. 

5. Remarks 

The methods [l] briefly discussed provide a framework to approach the analytic 
continuation problem in which the assumptions and approximations in the ap- 
proach can be clearly defined. They opened a completely new set of opportunities 
for the applications of quantum simulations. Several other important points are: 
(1) There is nothing about the methods that is intrinsic to quantum Monte Carlo 
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Figure 3. The spectral densities obtained from the simulation data partially represented in 
Fig. 3. The result (dashed line) obtained from the non-ergodic algorithm is improperly positioned 
and weighted. For the particular physical model, the value of G(0) gives the value of the sum 
rule, i.e., the expected value of the integral of A(w). 

or analytic continuation problems. (2) The Bayesian methods lead to a procedure 
with no adjustable parameters. This removes one of the difficulties often associ- 
ated with other regularization methods. We also remark that the requirement for 
Gaussian-distributed data is a result of a particular choice of the likelihood func- 
tion. Making the data as consistent as possible with this assumption is the hardest 
part of the problem and is the principal source of the increased computational cost 
associated with this problem. Recently, we have successfully obtained the actual 
real-time Green’s function from the imaginary-time one [4]. 

This work was supported in part by the U. S. Department of Energy. We also 
gratefully acknowledge the influence and past collaborations with Devinder Sivia 
and Richard Silver. 
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