Preliminary experience with monoenergetic photon mammography

PDF Version Also Available for Download.

Description

We are using a beam port at the National Synchrotron Light Source facility at Brookhaven National Laboratory as a source of monoenergetic photons. The photon source is radiation from a bending magnet on the X-ray storage ring and provides a usable X-ray spectrum from 5 keV to over 50 keV. A tunable crystal monochromotor is used for energy selection. The beam is 79mm wide and 0.5 mm high. We imaged the ACR mammography phantom and a contrast-detail phantom using a phosphor plate as the unaging detector. Phantom images were obtained at 16, 18, 20 and 22 keV. Phantom thickness varied ... continued below

Physical Description

8 p.

Creation Information

Johnston, R.E.; Washburn, D.; Pisano, E.; Thomlinson, W.C.; Chapman, D.; Gmur, N.F. et al. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We are using a beam port at the National Synchrotron Light Source facility at Brookhaven National Laboratory as a source of monoenergetic photons. The photon source is radiation from a bending magnet on the X-ray storage ring and provides a usable X-ray spectrum from 5 keV to over 50 keV. A tunable crystal monochromotor is used for energy selection. The beam is 79mm wide and 0.5 mm high. We imaged the ACR mammography phantom and a contrast-detail phantom using a phosphor plate as the unaging detector. Phantom images were obtained at 16, 18, 20 and 22 keV. Phantom thickness varied from 15 mm to 82 mm. These images were compared to images obtained with a conventional dedicated mammography unit. Subjective preliminary results show that image contrast of the monoenergetic images is similar to those obtained from the conventional x-ray source with somewhat sharper and cleaner images from the monoenergetic source. Quantitative analysis shows that the monoenergetic images have improved contrast compared to the polyenergetic derived images. Entrance skin dose measurements show a factor of 5 to 10 times less radiation for the monoenergetic images with equivalent or better contrast Although there remain a number of technical problems to be addressed and much more work to be done, we are encouraged to further explore the use of monoenergetic imaging.

Physical Description

8 p.

Notes

INIS; OSTI as DE96004226

Source

  • SPIE medical imaging 1995 conference, San Diego, CA (United States), 27-28 Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004226
  • Report No.: BNL--62393
  • Report No.: CONF-9502135--1
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 199206
  • Archival Resource Key: ark:/67531/metadc670558

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 24, 2015, 7:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Johnston, R.E.; Washburn, D.; Pisano, E.; Thomlinson, W.C.; Chapman, D.; Gmur, N.F. et al. Preliminary experience with monoenergetic photon mammography, article, December 31, 1995; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc670558/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.