The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths

PDF Version Also Available for Download.

Description

Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the ... continued below

Physical Description

2 Pages

Creation Information

Burchell, T.; Judkins, R.R.; Rogers, M.R. & Shaw, W.S. November 6, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the LASER flash, thermal- pulse method. Another approach to minimizing the temperature gradients that develop in a storage bed is to increase the thermal conductivity of the adsorbent carbon. To this end, we have developed hybrid monoliths that contain small fractions of mesophase pitch- derived carbon fibers. Our hybrid monoliths exhibit thermal conductivities in the range 0.2-0.9 W/m.K depending on the blend and density of the monolith. In comparison, a packed bed of granular carbon at comparable density would have a thermal conductivity of approximately 0.1 W/m.K [ 1 ]. The thermal conductivities of several of the hybrid The improved thermal conductivity of our monoliths is attributed to the bonding between the fibers and the incorporation of high thermal conductivity, mesophase pitch-derived carbon fibers. These features are visible in the SEM micrograph in Fig. 4.

Physical Description

2 Pages

Subjects

Keywords

STI Subject Categories

Source

  • International Symposium on Carbon, Tokyo, Japan, November 6-14, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00001745
  • Report No.: ORNL/CP-100157
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 1745
  • Archival Resource Key: ark:/67531/metadc670545

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 6, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 4, 2015, 2:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burchell, T.; Judkins, R.R.; Rogers, M.R. & Shaw, W.S. The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths, article, November 6, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc670545/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.