Optical and infrared detection using microcantilevers

PDF Version Also Available for Download.

Description

The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple means for developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. Bending is proportional to the amount of heat absorbed and can be detected using optical or electrical methods such as resistance changes in piezoresistive cantilevers. The microcantilever sensors exhibit two distinct thermal responses: a fast one ({theta}{sub 1}{sup ... continued below

Physical Description

11 p.

Creation Information

Oden, P.I.; Datskos, P.G.; Warmack, R.J.; Wachter, E.A. & Thundat, T. May 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple means for developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. Bending is proportional to the amount of heat absorbed and can be detected using optical or electrical methods such as resistance changes in piezoresistive cantilevers. The microcantilever sensors exhibit two distinct thermal responses: a fast one ({theta}{sub 1}{sup thermal} < ms) and a slower one ({tau}{sub 2}{sup thermal} {approximately} 10 ms). A noise equivalent temperature difference, NEDT = 90 mK was measured. When uncoated microcantilevers were irradiated by a low-power diode laser ({lambda} = 786 nm) the noise equivalent power, NEP, was found to be 3.5nW/{radical}Hz which corresponds to a specific detectivity, D*, of 3.6 {times} 10{sup 7} cm {center_dot} {radical}Hz/W at a modulation frequency of 20 Hz.

Physical Description

11 p.

Notes

OSTI as DE96009628

Source

  • Junior Science symposium, Oak Ridge, TN (United States), 10 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96009628
  • Report No.: CONF-9604132--1
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/238545 | External Link
  • Office of Scientific & Technical Information Report Number: 238545
  • Archival Resource Key: ark:/67531/metadc670390

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Aug. 23, 2016, 3:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oden, P.I.; Datskos, P.G.; Warmack, R.J.; Wachter, E.A. & Thundat, T. Optical and infrared detection using microcantilevers, report, May 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc670390/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.