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ABSTRACT 

We summarize calculations of the cross section for top quark production at 
hadron colliders within the context of perturbative quantum chromodynamics, 
including resummation of the effects of initial-state soft gluon radiation to all 
orders in the strong coupling strength. In our approach we resum the universal 
leading-logarithm contributions, and we restrict the calculation to the region of 
phase space that is demonstrably perturbative. We compare our approach with 
other methods. We present predictions of the physical cross section as a function 
of the top quark mass in proton-antiproton reactions at center-of-mass energies 
of 1.8 and 2.0 TeV, and we discuss estimated uncertainties. 

1. Introduction and Motivation 

In this report we summarize calculations carried out in perturbative quantum 
chromodynamics (QCD) of the inclusive cross section for the production of top quark- 
antiquark (ti!) pairs in hadron r e a ~ t i o n s ' * ~ * ~ , ~ .  We begin with a discussion of the mo- 
tivation for the inclusion of the effects of intial state soft gluon radiation to all orders 
in the QCD coupling strength, and we review the general formalism of resummation. 
We outline the method and domain of applicability of perturbative resummation that 
we developed in the past year's3, and we contrast this approach with other methods'~~. 
We present predictions of the physical cross section as a function of the top quark 
mass in proton-antiproton reactions at center-of-mass energies of 1.8 and 2.0 TeV. 

In hadron interactions at collider energies, tf pair production proceeds through 
partonic hard-scattering processes involving initial-state light quarks q and gluons 
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9. In lowest-order QCD, O(a:), the two partonic subprocesses are q + --+ t + Z 
and g + g + t + E. Calculations of the cross section through next-to-leading order, 
O( a:), involve gluonic radiative corrections to these lowest-order subprocesses as well 
as contributions from the q + g initial state’. A complete fixed-order calculation at 
order O(a:), n 3 4 does not exist. 

The physical cross section for each production channel is obtained through the 
factorization theorem, 

The square of the total hadronic center-of-mass energy is S, the square of the partonic 
center-of-mass energy is s, and m denotes the top mass. The variable q = & - 1 
measures the distance from the partonic threshold. The indices ij E (qij,gg} de- 
note the initial parton channel. The partonic cross section ki;(q, ma, p a )  is obtained 
commonly from fixed-order QCD calculations’, or, as described here, from calcula- 
tions that go beyond fixed-order perturbation theory through the inclusion of gluon 

where fqhl (z, pa) is the density of partons of type i in hadron hl. Henceforth, we use 
the notation a ( p )  a , ( p ) / ~ ,  where p is the common renormalization/factorization 
scale of the problem. Unless otherwise specified, a F a(p  = m). The total physical 
cross section is obtained after incoherent addition of the contributions from the the qij 
and gg production channels. We ignore the small contribution from the qg channel. 

A comparison of the partonic cross section at next-to-leading order with its lowest- 
order value reveals that the ratio becomes very large in the near-threshold region, i.e., 
the “K-factor” at the partonic level k(q) becomes very large as q + 0. An illustration 
of this behavior may be seen in Fig. 7 of Ref. [3]. This large ratio casts doubt on the 
reliability of simple fixed-order perturbation theory for physical processes for which 
the near-threshold region in the subenergy variable contributes significantly to the 
physical cross section. Top quark production at the Fermilab Tevatron is one such 
process, because the top mass is relatively large compared to the energy available. 
Other examples include the production of hadronic jets that carry large values of 
transverse momentum and the production of pairs of supersymmetric particles with 
large mass. To obtain more reliable theoretical estimates of the cross section in 
perturbative QCD, it is important first to identify and isolate the terms that provide 
the large next-to-leading order enhancement and then to resum these effects to aJl 
orders in the strong coupling strength. 

resummat ion’ 1’ t3l4. The parton flux is aij(Y7 p2) = 1: $ f i / h l ( z ,  p 2 ) f j / h a ( ~ / ~ ,  ~ ’ 1 7  

2. Gluon Radiation and Resummation 

The origin of the large threshold enhancement may be traced to initial-state 
gluonic radiative corrections to the lowest-order channels. Consider the subprocess 
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i(k1) + j ( l c 2 )  --+ t(p1) + f ( p 2 )  + g(k). We define the variable z through the partonic 
invariant s1 

Alternatively, (1 - z )  = 9. In the limit that z 4 1, the radiated gluon carries 
zero momentum. After cancellation of soft singularities and factorization of collinear 
singularities in 0(a3), there are left-over integrable logarithmic contributions to the 
cross section associated with initial-state gluon radiation. These contributions are 
proportional to ln(1-  z) .  

The partonic cross section may be expressed generally as 

(3) 2ij(q, m 2 = J' dz [ 1 + Rij(z, a)] &;j(q, m2, z) .  
Z m i n  

We work in the MS factorization scheme in which the q, and g densities and the 
next-to-leading order partonic cross sections are defined unambiguously. The lower 
limit of integration, zmin = 1 -4(1+q) + 4 J m ,  is set by kinematics. The derivative 

section expressed in terms of inelastic kinematic variables to account for the emitted 
radiation. 

Keeping only the leading logarithmic contributions through U(a3) ,  we may write 
the total partonic cross section as 

&ij(q, m2, z )  = d(2i j  0 )  (7, m2, z ) ) /dz ,  and &::' is the lowest-order U(a2)  partonic cross 

where Cqq = CF = 4/3 and Cgg = CA = 3. As is illustrated in Fig. l(a), the 
leading logarithmic contribution, integrated over the near-threshold region 1 2 z 2 0, 
provides an excellent approximation to the exact full next-to-leading order physical 
cross section as a function of the top quark mass. Although an exact fixed-order 
O(a4) calculation of tf pair production does not exist, we may invoke universality 
with massive lepton-pair production ( I T ) ,  the Drell-Yan process, to generalize Eq. (4) 
to higher order. In the near-threshold region, the kernel becomes 

The coefficient b2 = (11CA - 2nf)/12, and the number of flavors nf = 5. The 
further enhancement of the physical cross section produced by the 0(a4) leading 
logarithmic terms in the near-threshold region is shown in Fig. 1. At m = 175 
GeV, we compute the following ratios of the physical cross sections in the leading 

ratios show that the near-threshold logarithms build up cross section in a worrisome 
logarithmic approximation: a/?')/a/:) =1.22, and aij (o+1+2) /aij (O+l) = 1.14. These 
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Fig. 1. (a) Physical cross sections in the qQ channel in the MS scheme. The solid lines denote the 
finite-order partial sums of the universal leading-logarithmic contributions from the explicit O(a3) 
and 0(a4) calculations for the tf and Drell-Yan cross sections, respectively. Lower solid: do); middle 
solid: a('+'); upper solid: CT('+'+~). The dashed curve represents the exact next-to-leading order 
calculation for tt production, in excellent agreement with do+'). The dotted curve is our resummed 
prediction. (b) Optimum number of perturbative terms in the exponent with PVR (solid family 
is for PVR, dashed for perturbative approximation, both families increasing, for parametric values 
n = 10,20,30,40). 

fashion. The ratios suggest that perturbation theory is not converging to a stable 
prediction of the cross section. 

The goal of gluon resummation is to sum the series in a" lnzn( 1 - z )  to all orders 
in CY in order to obtain a more defensible prediction. This procedure has been studied 
extensively for the Drell-Yan process'. In essentially all resummation procedures, 
the large logarithmic contributions are exponentiated into a function of the QCD 
running coupling strength, itself evaluated at a variable momentum scale that is a 
measure of the radiated gluon momentum. For example, in the approach of LSvNl, 
the resummed partonic cross section is written as 

where the exponent 

Different methods of resummation differ in theoretically and phenomenologically 
important respects. Formally, if not explicitly in some approaches, an integral over 
the radiated gluon momentum z must be done over regions in which z -+ 0. Therefore, 
one significant distinction among methods has to do with how the inevitable "non- 
perturbative" region is handled in each case. Examination of Eqs. (6) and (7) shows 
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that an infrared singularity is encountered in the soft-gluon limit z -+ 1: owing to 
the logarithmic behavior of a($), a($) cx ln- ’ (q2/A&D),  a((1 - z)2/3m2) -+ 00 as 
z + 1. The infrared singularity is a manifestation of non-perturbative physics. In the 
approach of LSvN, this divergence of the integrand at the upper limit of integration 
necessitates introduction of the undetermined infrared cutoff (IRC) po in Eq. (6), 
with A Q ~ D  5 po 5 m. The cutoff prevents the integration over z from reaching the 
Landau pole of the QCD running coupling constant. The presence of an extra scale 
spoils the renormalization group properties of the overall expression. The unfortunate 
dependence of the resummed cross section on this undetermined cutoff is important 
numerically since it appears in an exponent’. It is difficult to evaluate theoretical 
uncertainties in a method that depends on an undetermined infrared cutoff. 

3. Perturbative Resummation 

The met hod of resummation we empl0y~9~ is based on a perturbative truncation of 
principal-value resummation. The principal-value method (PVR)‘ has an important 
technical advantage in that it does not depend on arbitrary infrared cutoffs, as all 
Landau-pole singularities are by-passed by a Cauchy principal-value prescription. 
Because extra undetermined scales are absent, the method also permits an evaluation 
of the perturbative regime of applicability of the method, i.e., the region of the gluon 
radiation phase space where perturbation theory should be valid. 

To illustrate how infrared cutoffs are avoided in the PVR method, it is useful 
to begin with an expression in moment (n) space for the exponent that resums the 
ln(l  - z )  terms7. Factorization and evolution lead directly to exponentiation in 
moment space: 

-9 [a (xm”] - 
xn-l-l  1 ? 2 

(1-x)Z 
J d x  

E(n,m ) = - 
0 

The function g(a )  is calculable perturbatively, but the behavior of a(Xm2) leads to a 
divergence of the integrand when Am2 + A$cD. To tame the divergence, a cutoff can 
be introduced in the integral over x or directly in momentum space, in the fashion of 
LSvN. In the principal-value redefinition of resummation, the singularity is avoided 
by replacement of the integral over the real axis x in Eq. (8) by an integral in the 
complex plane along a contour P that is symmetric under reflections across the real 
axls : 

The function EPV(n,m2) is finite since the Landau pole singularity is by-passed. In 
Eq. (9), all large soft-gluon threshold contributions are included through the two-loop 
running of a. 
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Equations (8) and (9) have identical perturbative content, but they have different 
non-perturbative content since the infrared region is treated differently in the two 
cases. The non-perturbative content is not a prediction of perturbative QCD. In our 
study of top quark production, we choose to use the exponent only in the region of 
phase space in which the perturbative content dominates. 

We use the attractive finiteness of Eq. (9) to derive a perturbative asymptotic 
representation of E ( x ,  a(m)) that is valid in the moment-space interval 

proximation 

1 
2abz 1 < x E In n < t f -. 

E(x, a) - E ( x ,  CY, N(t ) ) l  = minimum. Because of the range of validity in 

This perturbative asymptotic representation is 

Here 

N ( t ) + l  

p=l 
E ; j ( x ,  CY, N )  = 2C;j C Y ~ S ~ X ~ + ~ ,  

with the coefficients sp The number of perturbative 
terms N ( t )  is a function of only the top quark mass m. This expression contains no 
factorially-growing (renormalon) terms. The perturbative region of phase space is far 
removed from the part of phase space in which renormalons could be influential*. 

In Fig. l(b) we illustrate the validity of the asymptotic approximation for a value 
of t corresponding to m = 175 GeV. Optimization works perfectly, with N ( t )  = 6, 
and the plot demonstrates the typical breakdown of the asymptotic approximation if 
N were dowed to increase beyond N ( t ) .  This is the exponential rise of the infrared 
(IR) renormalons, the ( p  - l)! growth in the second term of Eq. (12). As long as n 
is in the interval of Eq. (lo), all the members of the family in n are optimized at the 

sp+l,p = b;-'2P/p(p + 1). 
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same N ( t ) ,  showing that the optimum number of perturbative terms is a function of 
t ,  i.e., of rn only. 

It is valuable to stress that we can derive the perturbative expressions, Eqs. (IO), 
(11)) and (12)) from the unregulated exponent Eq. (8) without the PVR prescription, 
although with less certitude. We discuss this point in some detail in our long paper3. 

After inversion of the Mellin transform from moment space to the physically rel- 
evant momentum space, the resummed partonic cross sections, including all large 
threshold corrections, can be written in the form of Eq. (3), but with Eq. ( 5 )  replaced 
by 

The leading large threshold corrections are contained in the exponent Eij(z ,  a), a cal- 
culable polynomial in z. The functions {Qj(x ,  a )}  arise from the analytical inversion 
of the Mellin transform from moment space to momentum space. These functions are 
produced by the resummation and are expressed in terms of successive derivatives of 
E: Pk(z, a) G akE(z ,  a)/lc!dkz.  Each Qj contains j more powers of cy: than of z so 
that Eq. (14) embodies a natural power-counting of threshold logarithms. 

The functional form of Eij for t E  production is identical to that for El production, 
except for the identification of the two separate channels, denoted by the subscript 
ij. However, only the leading threshold corrections are universal. Final-state gluon 
radiation as well as initial-state/final-state interference effects produce sub-leading 
logarithmic contributions that differ for processes with different final states. Among 
all {Qj}  in Eq. (14)) only the very leading one is universal. This is the linear term in 
PI contained in Qo, that turns out to be PI itself. Since we intend to resum only the 
universal leading logarithms, we retain only PI. Hence, Eq. (14) can be integrated 
explicitly, and the resummed version of Eq. (3) is 

The upper limit of integration in Eq. (15) is set by the boundary between the 
perturbative and non-perturbative regimes. An intuitive definition of the perturbative 
region, where inverse power terms are unimportant, is provided by the inequality & 5 1. This inequality is identical to the expression in moment space, Eq. (lo), 
with the identification n = In &. In momentum space, the same condition is realized 
by the constraint that all {Qj}, j 2 1 be small compared to Qo. From the explicit 
expressions3 for the {Qj},  one may show that this constraint corresponds to 

Equation (16) is equivalent to the requirement that terms that are subleading accord- 
ing to perturbative power-counting are indeed subleading numerically; Eq. (16) is the 
essence of perturbation theory in this context. 
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As remarked above, we accept only the perturbative content of principal-value 
resummation, and our cross section is evaluated accordingly. Specifically, we use 
Eq. (15) with the upper limit of integration, z,,,, calculated from Eq. (16). The up- 
shot is an effective threshold cutoff on the integral over the scaled subenergy variable 
7, but one that is calculable, not arbitrary. Our perturbative resummation probes the 
threshold down to the point 7 2 7 0  = (1 - ~ma0)/2. Below this value, perturbation 
theory, resummed or otherwise, is not to be trusted. For the top mass m = 175 GeV, 
we determine that the perturbative regime is restricted to 7 2 0.007 for the QQ channel 
and 7 2 0.05 for the gg channel. These numbers may be converted to more readily 
understood values of the subenergy above which we judge our perturbative approach 
is valid: at m = 175 GeV, these are 1.22 GeV above the threshold in the pj channel 
and 8.64 GeV above the threshold in the gg channel. The difference reflects the larger 
color factor in the gg case. A larger color factor makes the non-perturbative region 
larger. (One could attempt to apply Eq. (15) all the way to z,,, = 1, i.e., to 7 = 0, 
but one would then be using a modeEfor non-perturbative effects, the one suggested 
by PVR, below the region justified by perturbation theory.) 

It is useful to comment on the differences between our approach to resummation 
and another method published recently by Catani et  al (CMNT)4. We both use the 
same universal leading-logarithm expression in moment space, but differences occur 
after the transformation to momentum space. In this paper, we set aside comments on 
mathematical aspects of their procedure and focus instead on phenomenological issues 
of interest. As remarked above, the Mellin transformation generates subleading terms 
in momentum space. CMNT choose to retain all of these inasmuch as they perform 
the Mellin inversion numerically. Instead, in keeping with the fact that subleading 
logarithmic terms are not universal, we retain only the universal leading logarithm 
terms in momentum space, and we restrict our phase space integration to the region 
in which the subleading terms would not be numerically significant regardless. The 
differences in the two approaches can be stated more explicitly if we examine the 
perturbative expansion of the kernel 7i ; (z ,a) ,  Eq. (14). If, instead of restricting 
the resummation to the universal leading logarithms only, we were to use the full 
content of Eq. (14), we would arrive at an analytic expression that is equivalent to 
the numerical inversion of CMNT, 

R: N 2acij  W(i - Z) - 2 y E h ( i  - t) + C I ( ~ ) .  (17) [ 1 
In terms of this expansion, in our work we retain only the leading term h 2 ( 1  - z )  at 
order a, but CMNT retain both this term and the subleading term -27,ln(l - z) .  
We judge that it is not justified to keep the subleading term for three reasons: it is not 
universal; it is not the same as the subleading term in the exact 0(a3) calculation; and 
it can be changed arbitrarily if one elects to keep non-leading terms in moment space. 
As a practical matter, the subleading term is negative and numerically significant. 
In the pj channel at m = 175 GeV and = 1.8 TeV, its inclusion eliminates more 
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Fig. 2. Differential cross section d c / d v  in the =-scheme for the (a) qtj  and (b) gg channels: Born 
(dotted), NLO (dashed) and resummed (solid). 

than half of the contribution from the leading term. In our view, the presence of 
numerically significant subleading contributions means that non-universal structures 
are not under control and begs the question of consistency*. A further justification 
for the retention of only the leading term is that it approximates the exact next-to- 
leading order result well, as shown in Fig. 1( a). The choice made by CMNT reproduces 
only one-third of the exact next-to-leading order result. The influence of subleading 
terms is amplified at higher orders where additional subleading structures occur in 
the CMNT approach with significant numerical coefficients proportional to 7r2, ((S), 
and so forth. Further comments about the different results in the two approaches are 
reserved to our discussion of predictions for cross sections at = 1.8 TeV. 

4. Physical cross section 

In order to achieve the best accuracy available we wish to include in our predictions 
as much as is known theoretically. Our final resummed partonic cross section can 
therefore be written2l3 

The second term is the part of the partonic cross section up to one-loop that is 
included in the resummation, while the last term is the exact one-loop cross section5. 
To obtain physical cross sections, we insert Eq. (18) into Eq. ( l), and we integrate over 
7 .  Other than the top mass, the only undetermined scales are the QCD factorization 
and renormalization scales. We adopt a common value p for both, and we vary this 
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Fig. 3. Inclusive cross section for top quark production in the =-scheme. The dashed curves show 
our perturbative uncertainty band, while the solid curve is our central prediction: (a) 6 = 1.8 TeV 
and (b) & = 2 TeV. 

scale over the interval p / m  E {0.5,2} in order to evaluate the theoretical uncertainty 
of the numerical predictions. We use the CTEQSM parton densitiesg. 

&i' S,m2,q) 

Its integral. over q is the total cross section. In Fig. 2 we plot these distributions for 
m = 175 GeV, f i  = 1.8 TeV, and p = m. The full range of q extends to 25, 
but we display the behavior only in the near-threshold region where resummation is 
important. We observe that, at the energy of the Tevatron, resummation is significant 
for the qij channel and less so for the gg channel. In Fig. l(a), the dotted curve shows 
that our final resummed cross section in the qij channel, after integration over all 
q, lies about half-way between the cross sections obtained from the near-threshold 
leading logarithms at orders 0(a3) and O(a4>. 

We show our total tf-production cross section as a function of top mass in Fig. 3. 
The central value of our predictions is obtained with the choice p / m  = 1, and the 
lower and upper limits are the maximum and minimum of the cross section in the 
range of the hard scale p / m  E {0.5,2). At m = 175 GeV, the full width of the 
uncertainty band is about 10% . We consider that the variation of the cross section 
over the range p / m  E {0.5,2} provides a good overall estimate of uncertainty. For 
comparison, we note that over the same range of p, the strong coupling strength a 
varies by &lo% at m = 175 GeV. Our prediction of Fig. 3(a) is in agreement with the 
datal'. We find #(m = 175 GeV, = 1.8 TeV) = 5.52':::; pb. Our cross section 
is larger than the next-to-leading order value by about 9%. Using a different choice 
of parton densities'', we find a 4% difference in the central value of our prediction' 
at m = 175 GeV. A comparison of the predictions3 in the MS and DIS factorization 

A quantity of phenomenological interest is the differential cross section 

0 
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schemes also shows a modest difference at the level of 4%. 
In Fig. 3(b) we present our predictions for an upgraded Tevatron operating at 

f i  = 2 TeV. We predict d'(m = 175 GeV, 6 = 2 TeV) = 7.56?::2! pb. The 2 pb 
increase in the predicted top quark cross section over its value at =1.8 TeV is 
about a 37% gain. 

At m = 
175 GeV and f i  = 1.8 TeV, the three values are: dr(BC253) = 5.522::;; pb; 
a''(LSvN1) = 4.95:::;: pb; and ar'(CMNT4) = 4.75::::; pb. From the purely nu- 
merical point of view, all three predictions agree within their estimates of theoreti- 
cal uncertainty. However, the resummation methods differ, as discussed above, the 
methods for estimating the uncertainties differ, and different parton sets are used. 
Comparing with LSvN', we find that our central values are 10 - 14% larger, and 
our estimated theoretical uncertainty is 9 - 10% compared with their 28% - 20%. 
Our Born cross section, however, is about 3 - 5% larger than the LSvN Born cross 
section due to the different parton distributions used in the two calculations. Both 
the central value and the band of uncertainty of the LSvN predictions are sensitive to 
their undetermined infrared cutoffs. To estimate theoretical uncertainty, we use the 
standard p-variation, whereas LSvN obtain their uncertainty primarily from varia- 
tions of their cutoffs. CMNT calculate a central value of the resummed cross section 
(also with p / m  = 1) that is less than 1% above the exact next-to-leading order value. 
As explained earlier, the suppression of the effects of resummation arises from the 
retention by CMNT of numerically significant non-universal subleading logarithmic 
terms. Indeed, if the subleading term -27&~(l - z )  is discarded in Eq. (17), the 
residuals & j / u r o  defined by CMNT4 increase from 0.18% to 1.3% in the cpj produc- 
tion channel and from 5.4% to 202% in the gg channel12. After addition of the two 
channels, the total residual 6/aNLo grows from the negligible value of about 0.8% 
cited by CMNT to the value 3.5%. While still smaller than the increase of about 9% 
that we obtain, the increase of 3.5% vs. 0.8% shows the substantial influence of the 
subleading logarithmic terms retained by CMNT. We explain above the reasons that 
we judge that our method is preferable theoretically. 

Turning to p p  scattering at the energies of the Large Hadron Collider (LHC) at 
CERN, we note a few significant differences from p# scattering at the energy of the 
Tevatron. The dominance of the qij production channel is replaced by gg dominance 
at the LHC. Owing to the much larger value of 6, the near-threshold region in the 
subenergy variable is relatively less important, reducing the significance of initial- 
state soft gluon radiation. Lastly, physics in the region of large subenergy, where 
straightforward next-to-leading order QCD is also inadequate, becomes significant 
for t5  production at LHC energies. Using the approach described in this paper, we 
estimate d'(m = 175 GeV, &- = 14 TeV) = 760 pb. 

Two other groups have published predictions for the cross section. 
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5. Discussion and Conclusions 

In this paper, we summarize the calculation of the inclusive cross section for 
top quark production in perturbative QCD, including the resummation of initial- 
state gluon radiation to all orders. The advantages of the perturbative resummation 
method2i3 are that there are no arbitrary infrared cutoffs, and there is a well-defined 
perturbative region of applicability where subleading logarithmic terms are numer- 
ically suppressed. Our theoretical analysis shows that perturbative resummation 
without a model for non-perturbative behavior is both possible and advantageous. In 
perturbative resummation, the perturbative region of phase space is separated cleanly 
from the region of non-perturbative behavior. The former is the region where large 
threshold corrections exponentiate but behave in a way that is perturbativeZy stabIe. 
The asymptotic character of the QCD perturbative series, including large multiplica- 
tive color factors, is flat, and excursions around the optimum number of perturbative 
terms does not create numerical instabilities or intolerable scale-dependence. Infrared 
renormalons are far away from the stability plateau and, even though their presence 
is essential for defining this plateau, they are of no numerical consequence in the 
perturbative regime. Large color factors, which are multiplicative in the exponent, 
enhance the infrared renormalon effects and contribute significantly to limiting the 
perturbative regime. 

Our resummed cross sections are about 9% above the next-to-leading order cross 
sections computed with the same parton distributions. The scale dependence of our 
cross section is fairly flat , resulting in a 9 - 10% theoretical uncertainty. This variation 
is smaller than the corresponding dependence of the next-to-leading cross section, as 
should be expected. In recent papers4, the authors state that the increase in cross 
section they find with their resummation method is of the order of 1% over next- 
to-leading order. The numerical difference in the two approaches boils down to the 
treatment of the subleading logarithms, which can easily shift the results by a few 
percent, if proper care is not taken. Our approach includes the universal leading log- 
arithms only while theirs includes non-universal subleading structures which produce 
the suppression they find. In our opinion, their treatment of the subleading structures 
is not correct. The issue is one to be decided by the theory community; it is not one 
for experimental resolution. 

Our theoretical analysis and the stability of our cross sections under p variation 
provide confidence that our perturbative resummation procedure yields an accurate 
calculation of the inclusive top quark cross section at Tevatron energies and exhausts 
present understanding of the perturbative content of the theory. Our prediction agrees 
with data, within the large experimental uncertainties. 

Extending our calculation to much larger values of m than shown in Fig. 3, we 
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find that resummation in the principal gij channel produces enhancements over the 
next-to-leading order cross section of 21%, 26%, and 34%, respectively, at m = 500, 
600, and 700 GeV. The reason for the increase of the enhancements with mass at 
fixed energy is that the threshold region becomes increasingly dominant. Since the 
qij channel also dominates in the production of hadronic jets at very large values of 
transverse momenta, we suggest that on the order of 25% of the excess cross section 
reported by the CDF collab~ration’~ may well be accounted for by resummation. 

This work was supported by the U.S. Department of Energy, Division of High 
Energy Physics, Contract No. W-31-109-ENG-38. 
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