Fracture testing and analysis of adhesively bonded joints for automotive applications

PDF Version Also Available for Download.

Description

In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would ... continued below

Physical Description

10 p.

Creation Information

Boeman, R.G. & Warren, C.D. December 31, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. This paper concentrates on the details of developing accurate fracture test methods for adhesively bonded joints in the automotive industry. The test methods being developed are highly standardized and automated so that industry suppliers will be able to pass on reliable data to automotive designers in a timely manner. Mode I fracture tests have been developed that are user friendly and automated for easy data acquisition, data analysis, test control and test repeatability. The development of this test is discussed. In addition, materials and manufacturing issues are addressed which are of particular importance when designing adhesive and composite material systems.

Physical Description

10 p.

Notes

OSTI as DE95007024

Source

  • 10. annual ASM/ESD advanced composites conference, Dearborn, MI (United States), 7-10 Nov 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95007024
  • Report No.: CONF-941195--1
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 28309
  • Archival Resource Key: ark:/67531/metadc670298

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1994

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 19, 2016, 1:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Boeman, R.G. & Warren, C.D. Fracture testing and analysis of adhesively bonded joints for automotive applications, article, December 31, 1994; Tennessee. (digital.library.unt.edu/ark:/67531/metadc670298/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.