Motion planning for mobile manipulators using the FSP (full space parameterization) approach

PDF Version Also Available for Download.

Description

The efficient utilization of the motion capabilities of mobile manipulators, i.e., manipulators mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by the addition of the degrees of freedom (d.o.f.) of the platform to those of the manipulator. At the velocity level, the linearized Jacobian equation for such a redundant system represents an underspecified system of algebraic equations. In addition, constraints such as obstacle avoidance or joint limits may appear at any time during the trajectory of the system. A method, which we named the FSP (Full Space Parameterization), has recently been developed to resolve such ... continued below

Physical Description

8 p.

Creation Information

Pin, F. G.; Morgansen, K. A.; Tulloch, F. A. & Hacker, C. J. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The efficient utilization of the motion capabilities of mobile manipulators, i.e., manipulators mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by the addition of the degrees of freedom (d.o.f.) of the platform to those of the manipulator. At the velocity level, the linearized Jacobian equation for such a redundant system represents an underspecified system of algebraic equations. In addition, constraints such as obstacle avoidance or joint limits may appear at any time during the trajectory of the system. A method, which we named the FSP (Full Space Parameterization), has recently been developed to resolve such underspecified systems with constraints that may vary in time and in number during a single trajectory. In this paper, we review the principles of the FSP and give analytical solutions for the constrained motion case, with a general optimization criterion for resolving the redundancy. We then focus on a solution to the problem introduced by the combined use of prismatic and revolute joints (a common occurrence in practical mobile manipulators) which makes the dimensions of the joint displacement vector components non-homogeneous. Successful applications to the motion planning of several large-payload mobile manipulators with up to 11 d.o.f. are discussed. Sample trajectories involving combined motions of the platform and manipulator under the time-varying occurrence of obstacle and joint limit constraints are presented to illustrate the use and efficiency of the FSP approach in complex motion planning problems.

Physical Description

8 p.

Notes

OSTI as DE96009727

Source

  • ISRAM `96: 6. international symposium on robotics and manufacturing, Montpellier (France), 27-30 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009727
  • Report No.: CONF-9605145--2
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 230365
  • Archival Resource Key: ark:/67531/metadc670164

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 23, 2016, 12:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pin, F. G.; Morgansen, K. A.; Tulloch, F. A. & Hacker, C. J. Motion planning for mobile manipulators using the FSP (full space parameterization) approach, article, May 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc670164/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.