Dense ceramic membranes for methane conversion

PDF Version Also Available for Download.

Description

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as ... continued below

Physical Description

8 p.

Creation Information

Balachandran, U.; Mieville, R.L.; Ma, B. & Udovich, C.A. May 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

Physical Description

8 p.

Notes

OSTI as DE96012714

Source

  • 1. joint power and fuel systems contractors conference, Pittsburgh, PA (United States), 9-11 Jul 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96012714
  • Report No.: ANL/ET/CP--90022
  • Report No.: CONF-9607126--5
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/267578 | External Link
  • Office of Scientific & Technical Information Report Number: 267578
  • Archival Resource Key: ark:/67531/metadc669966

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 15, 2015, 6:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 21

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Balachandran, U.; Mieville, R.L.; Ma, B. & Udovich, C.A. Dense ceramic membranes for methane conversion, report, May 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc669966/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.