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0 S&T d 
Conventional model based analysis and computing methods are not adequate for real time control of present and 
future distribution systems because of their complexity, nonlinear nature, and size. On the other hand, artificial 
neural networks (NN), which emulate the structures of biological nervous systems, have many properties that 
make them suitable for real-time power system applications. The development and application of neural 
nctworks for combined control of capacitor banks and voltage regulators in a distribution system is described. 
The control is optimal in the sense of minimizing system energy (I'R) loss with the constraint condition of 
maintaining all bus voltages within standard limits (*5%). Given the loading of the distribution systems, the 
problem is to determine the tap or switch states of the capacitor banks and voltage regulators such that the 
cumulative IZR loss of the whole distribution system is minimized without violating standard or specified voltage 
limits. 

The general principles of neural network design for the specific problem are described. While the number and 
values for the outputs of the neural net is decided by the controllable dwices, it is important to select the input 
variables that contain enough information to solve the problem. A three- layer architecture for the neural net 
controller is adopted because previous studies have shown that this structure is sufficient for generalization. It is 
also important to select the training data that reasonably covers the whole input-output spaces of system 
operation. Finally, the local minimum problcm for the back propagation algorithms should be avoided during 
the training process. Unfortunately, there esist no systematic methods that guarantee a global solution. 

A neural net controller for a radially configurcd distribution system with 30 buses, 5 switchable capacitor banks 
and one 9 tap voltage regulator is designed based on the above principles. For comparison, two different input 
sets are used. The first input set uses P, Q and V from 6 measurement points in the distribution circuit. The 
second set added the 6 output variables as its input in addition to the original input variables thus providing 
fcedback to the neural nehvork. The hidden layer has 13 nodes after a trial and error process. The training data 
is obtained by equally dividing the masimum load into 13 levels, and then solving the optimal problem with an 
eshaustive search. Since the 13 pairs of I/O data can not train the neural net satisfactorily, a data espansion 
approach that expands the 13 pairs of data to 3744 pairs without increasing the computational complex was 
introduced. This is based on the fact that for a given load level, there is only one optimal solution corresponding 
to all possible tap states of controlled devices. Monte Carlo simulation technique is used to test the neural 
controller. Five different load patterns ranging fiom a smooth sinusoidal curve to a purely random sequence 
uniformly distributed in (0, l), and four levels (O%, 25%, 35% and 50%) of load distribution deviation on each 
bus are considered in the simulation. The simulation is executed on 12,000 samples over all the 20 test cases. 
For comparison, the true solutions for the 20 cases are also calcuIated over a smaller sample size. The results 
show that energy losses for the neural controller is not significantly larger than the true solution's, and there are 
some occurrences of voltage out of bounds when the load and distribution deviation is large. However, the 
frequency of this occurrence and the values of out bound voltages are not very significant as shown by the 
statistical data. The simulation also shows that the neural controller nith feedback can outperform the one 
without feedback. 

In summary, with fewer training data obtained fiom the optimization process, combined with the training data 
e?;pansion approach, we built a relatively good performing NN controller that othenvise would fail if using the 
original training data set only. The results show that, proper selection of the input variables and training set that 
covers the inputloutput space of the system being modeled is important in building a successll neural network. 
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ABSTRACT 
A neural network for controlling shunt capacitor banks 
and feeder voltage regulators in electric distribution 
systems is presented. The objective of the neural con- 
troller is to minimize total 12R losses and maintain all 
bus voltages within standard limits. The performance 
of the neural network for different input selections and 
training data is discussed and compared. Two different 
input selections are tried, one using the previous con- 
trol states of the capacitors and regulator along with 
measured line flows and voltage which is equivalent to 
having feedback and the other with measured line flows 
and voltage without previous control settings. The re- 
sults indicate that the neural net controller with feed- 
back can outperform the one without. Also, proper se- 
lection of a training data set that adequately covers the 
operating space of the distribution system is important 
for achieving satisfactory performance with the neural 
controller. The neural controller is tested on a radially 
configured distribution system with 30 buses, 5 switch- 
able capacitor banks and one nine tap line regulator 
to demonstrate the performance characteristics associ- 
ated with these principles. Monte Carlo simulations 
show that a carefully designed and relatively compact 
neural network with a small but carefully developed 
training set can perform quite well under slight and 
extreme variation of loading conditions. 

KEYWORDS: neural networks, artificial intelligence, 
real-time power systems control, capacitor control, reg- 
ulator control, distribution automation. 

1. INTRODUCTION 

Changes in the utility industry including increasing 
deregulation and competition, integration of a more di- 
verse portfolio of supply and demand resources, finan- 
cial and environmental constraints of building new con- 
struction is adding significant complexities to the oper- 
ation of electric power distribution. More sophisticated 
real time control systems are needed for distribution 
systems to provide electric power with higher efficiency, 
quality, and security without the need for building ne= 
facilities. In addition to traditional control such as 
voltage/reactive power (var) control , the increasing 
use of new power generation, storage, and conversion 
technology, as well as the incorporation of independent 
power dispatches, further increases the difficulty of im- 
plementing such real time control systems. Conven- 
tional model based analysis and computing methods 
are not adequate for real time automation of present 
and future distribution systems because of their com- 
plexity, nonlinear nature, and size. On the other hand, 
artificial neural netxorks (NN), which emulate the struc- 
tures of biological nervous systems, have many proper- 
ties that make them suitable for real-time power sys- 
tem applications, such as real time analysis, estima- 
tion, prediction and control. These properties include 
“model free” input-output mapping, inherited non lin- 
earity, massively parallel and distributed connections 
of simple processor units, and adaptability to environ- 
mental changing. 

In distribution system operation, shunt capacitor 
banks and feeder regulators are necessary for provid- 
ing acceptable voltage profiles to all end-use customers 
and reducing energy losses associated with power line 
on large distribution systems. These capacitors and 
regulators need to be controlled according to different 
load patterns, otherwise they do not meet their design 
objective and can indeed cause voltage problems and 
increased losses. 

Conventional optimization methods, such as dynamic 
7he suimliied manusaipt has been 
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operation and regulator tap positions are time consum- 
ing and impossible for large systems. It is unrealistic 
to directly apply these methods to real time optimal 
control of distribution systems. Because a voltage reg- 
ulator generally has many tap positions (typically 32 
providing 5/8with each tap), the combined voltage reg- 
ulator and capacitor banks control is more complex and 
difficult. 

Although there are many papers published on NNs 
applied to power systems. (part of them can be found 
in a survey in [l],) few papers can be found for com- 
bined control of capacitor banks and voltage regula- 
tors in distribution systems. Some papers have been 
published for NN control for capacitors only without 
considering the voltage regulators [2, 31. In this paper, 
we present an experimental neural network controller 
for control of the capacitor banks and tap positions of 
feeder regulators. The neural controller is applied to a 
30 bus radial distribution system with five switchable 
capacitors and one voltage regulator with 9 taps. The 
optimization of this combined capacitor bank and volt- 
age regulator control is to minimize the energy loss of 
the whole distribution circuit under the constraint con- 
dition that bus voltage remain within standard limits 
(within -f5% of nominal). 

In section 2, the combined capacitor and regula- 
tor control problem is presented. Section 3 describes 
the design process of the NN controller. In section 4, 
the simulation of the neural controller for the 30 bus 
distribution system is given. Finally, section 5 gives 
conclusions. 

2. PROBLEM DESCRIPTION 

In this study, two assumptions are made in regards to 
the simulation of the combined capacitor and regulator 
control. First, the locations and ratings of the capac- 
itors and voltage regulators are assumed to be given 
and fixed for the system to be controlled. Second, it 
is assumed that instrumentation and communication 
is in place for simultaneous collecting (or synchroniz- 
ing) real time measured line flows and bus voltages at 
various locations on the distribution system. The unit 
of time mentioned in this study could refer to any seg- 
ments of time such as 1 sec., 1 minute, 1 hour, etc.. The 
loads are modeled as constant complex power which do 
not exceed the designed maximum values. 

Given the loading of the distribution systems, the 
problem is to determine the on/off states of the capac- 
itors (or tap settings for adjustable capacitor banks) 
and the tap settings of the voltage regulators so that 
the cumulative I* R loss of the whole distribution sys- 
tem is minimized without violating standard or speci- 
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Figure 1: The system structure of the NN controller 
for the distribution system. 

fied voltage limits. 
This can be shown mathematically as follows: 

argmin E& Iri (T) 12Kl(P(t) ,Q(t))  (1) 
sat .  4 E (I$.mjnr & s a x ) ,  j = 1, ..., N. 

where M and N are the total number of lines and buses 
respectively, %-in and x-,,,,, are the lower and upper 
voltage limit of each bus, and T is the L dimensional 
tap position vector for the total L number of capacitor 
banks and voltage regulators in the circuit. Note that 
when the active power, P and reactive power, Q of 
each bus are given, the complex line current Ii is only 
a function of T. The voltage constraint followed in this 
study is to  maintain the lower and upper voltages for 
each bus within f5% p.u. 

Thus, for a gken set of loads at time t at each bus, 
we want to find the optimal tap position vector T that 
minimizesthe 12R loss of the whole distribution circuit. 
This is a nonlinear combinatorial optimization prob- 
lem. It can not be solved in real time using traditional 
methods such as power flow analysis and dynamic pro- 
gramming if the number of capacitors and regulators 
and their taps are large. As mentioned in Section 1, a 
trained neural network provides a computationally effi- 
cient way to solve the problem in real time although the 
training process may take a long time and is generally 
carried out off line. 

3. THE DESIGN OF THE NEURAL 
NETWORK CONTROLLER 

There are numerous neural network approaches with 
different structures, transfer functions, and training al- 
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gorithms. While not every problem can be solved via 
NN,  some problems may be solved by several different 
N N  approaches. In this paper, we adopt an NN ap- 
proach with a three-layer feed forward structure and 
the back propagation algorithm because of its relative 
simplicity. maturity in regards to applications in differ- 
ent fields. and common use. More importantly, previ- 
ous studies [4] have shown that this structure is suffi- 
cient for generalization. 

The structure of the neural controller for the distri- 
bution system is shown in Figure 1. The inputs to the 
neural controller are the measured line flows P and Q 
and bus voltage magnitudes V at select points on the 
distribution circuit. The input and associated outputs 
for the selected points and states of operation of the 
distribution system should contain enough information 
needed to solve the optimization problem (1). How- 
ever, how many measurement points are needed, where 
should the locations of these points be, and which cir- 
cuit parameters (P, Q and/or V )  should be used inputs 
to the NS remain open questions. The answers to these 
questions have practical significance because the fewer 
the number of measurement points, the lower the cost 
of the control system. Intuitively, the selection of these 
measurement points should be close to the locations of 
controllable devices. The selection of the input vari- 
ables could be more complex if the subject distribution 
system has a network structure. 

The number of outputs of the NN are determined 
by the number of capacitor banks and voltage regu- 
lators to be controlled and their tap states. One NN 
output was assigned for each device in order to reduce 
the number of Y N  outputs. Since the transfer function 
at  the output layer of the NN is a hyperbolic tangent, 
the output of the neuron active function is a contin- 
uous value. Thus, each controllable device which has 
multiple (or binary) state needs a multiple (or binary) 
level quantizer q after each NN output. 

In regards to the NN architecture, it is important 
to determine the number of hidden layers and the num- 
ber of nodes on each hidden layer. One way to build 
the structure is based on the “growing idea” [5, 6, 71. 
There are also some “rules of thumb” or formulas to  
find the number of nodes of the hidden layer based on 
the input number. However, if there is little or no a 
pr ior  knowledge about the problem, the best structure 
can only be obtained by trial and error. 

The training process is usually carried out off line 
because of the inefficiency of existing training algo- 
rithms, although it is possible to adapt the neural net- 
work on line as new data comes in. A set of known 
input and output data that satisfy the problem (1) are 
needed to  train the NN controller, where the input data 

is the measured P,Q and/or V at some measurement 
points, and the output is the optimal switching states 
(tap positions in the case of adjustable) of capacitor 
banks and tap positions of voltage regulators corre- 
sponding to some given load pattern of the distribution 
system. Because neural networks are in principle gener- 
alizers or interpolators for a given set of training data, 
the performance of the trained neural network is depen- 
dent, to a large degree, on the selection of the training 
data. Thus, the training input data should reasonably 
cover the whole input space under possible operational 
conditions, and it is important to carefully select or de- 
sign the training data. Some auxiliary technique such 
as simulation may be needed when it is necessary and 
possible. 

The back propagation training algorithm requires 
setting of its learning rate, and in some cases the mo- 
mentum in the training process. Some adaptive and 
fuzzy logic approaches [8, 91 may be used to decide 
these parameters dynamically. However, the steepest 
descent algorithm may fall into undesired local mini- 
mum solutions making achieving a global optimal so- 
lution difficult. The problem can be caused by not se- 
lecting a proper initial setting of the weights and bias. 
Ho-xever, no systematic method exists to find an initial 
setting that guarantees a global optimal solution. 

After building the neural network and training it, 
a test process must be carried out. The test process 
should use those 1/0 pairs that are not used in the 
training process. Only after the test results are satis- 
fied can the NN controller be applied to the real time 
systems. 

4. SIMULATION RESULTS 

A XN controller that applies the design methods de- 
scribed in the previous section was applied to a 30 bus 
test distribution system described in [lo, 21. However, 
the ratings of the capacitor banks given in [2] were in- 
creased and a feeder voltage regulator was added at bus 
4 so that the voltage constraint conditions could be met 
for maxium loading. The voltage regulator is modeled 
with 9 tap positions which are distributed equally be- 
tween ratio l and 1.1 P.u.. Even though the technique 
described above is capable of controlling adjustable ca- 
pacitors (with multiple tap settings) only conventional 
two-state capacitors (on/off) are studied in this paper 
while [2] considered 4 tap positions for all the capac- 
itors. The new ratings of the capacitors are shown in 
Tabel 1. 

Figure 2. shows a 3-D one line diagram of the 30- 
bus distribution system. The vertical bars indicate the 
maximum active power loads on each bus. The reactive 



Figure 2: One-line diagram of the 30-bus Distribution 
System. The vertical bars are the maximum active 
powers in KW. The 6 measurement points are at the 
up stream sides of Bus 1, Bus 22: Bus 4, Bus 8, Bus 9 
and Bus 19. 

c13 
800 

power loads are fixed as one third of active power as in 
1101 21. 

c15 I c19 I c 2 3  I cZ5 
1000 I 400 I 1600 I 2000 

Tabel 1. Capacitor ratings for the test system. 

Thus, by the design principle in Section 3, the NN 
controller has 6 outputs. The five outputs for capac- 
itors are fed into 5 binary quantizers and the output 
for the voltage regulator is fed into a 9 level quantizer. 
The training output data for the capacitors and regu- 
lator are simply the tap position index (0,l) and (0, 
..., 8) respectively. 

Two different input selections for the NN are stud- 
ied. For comparison, the first set of input variables 
are chosen the same as in [2].l This first set of 24 
inputs consists of the power flows P and Q and volt- 
age magnitudes V on the 6 measurement points shown 
in Figure 2, which are obtained by solving the power 
flow equations for the system, and the current tap po- 
sitions of the capacitors and regulator. The second set 
tested another NN controller without the tap positions 
as its input since inputs P,Q and V should contain 
some information about the current tap positions. The 
performance of the two controllers was compared. 

The structure of the NN controller that was se- 
lected has only one hidden layer with 13 nodes. (This 

'Several different input variable sets were tried without sig- 
nificantly altering the training error. 
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Figure 3: Five different degrees of load profile devia- 
tions over two sine periods. 

structure is much smaller than the one in [2] where 
two stages of 3 layer NN are used and binary outputs 
are used to represent multi tap positios.) The neuron 
transfer functions on the hidden and output layer are 
chosen as hyperbolic tangent. 

Although the input variables are selected as the 
same as in [2], the training data are collected in a dif- 
ferent way. In order to cover the whole input space, 
the training data are selected by uniformly dividing 
each bus load from zero to maximum into 12 segments. 
Thus, the 13 load levels are used to obtain the input 
P, Q and V data and the corresponding output tap po- 
sitions of the capacitors and the regulator, which are 
obtained by solving problem (1) 13 times. 

The testing of the NN controller included conduct- 
ing Monte Carlo simulations to try to replicate the 
conditions under which NN would have to operate in 
the field. Two variations, the total load level and the 
load distribution patterns, are simultaneously consid- 
ered. In one dimension, the total load level is varied 
from a smooth sinusoidal curve to a noisy one with dif- 
ferent noise magnitude to simulate real-time power sys- 
tem data. The noise is uniformly distributed in (0 , l ) .  
Figure 3 shows the 5 different load curves during two 
periods, where O%, 25%, 50%, 75% and 100% corre- 
spond to the magnitudes of added noise. Note in the 
100% variation case, it is possible for the load level to 
change from maximum load to  zero load or vise versa 
in one time increment. 

The load distribution patterns of the buses may also 
vary randomly. That is, the load demand on each in- 
dividual bus may deviate &z(t)% independently both 
with respect to space and time, where z( t )  is a uni- 



formly distributed random variable in four different in- 
tervals, (0, 0), (0, 25), (0, 35), and (0, 50). The re- 
sultant load Distribution Pattern Deviation (DPD) is 
normalized so that the sumation of the total load of 
the whole circuit would not exceed the total load level. 

Thus, there are a total of 20 test cases (5 loading 
cases times 4 demand cases) to introduce different vari- 
ations on both loading level and distribution patterns. 
The purpose of this design is to test the robustness 
of the neural network controller and compare different 
approaches. In order to get sufficiently accurate statis- 
tical data, each Monte Carlo run is executed through 
12,000 units of sampling time (represents 500 days if a 
unit is 1 hour or 8.33 days if a unit is 1 minute). 

We first used the 13 1/0 data pairs to train the 
neural network. Each input data vector is composed of 
the 18 P, Q and V values obtained from the 6 measure- 
ment points. Each output data vector is composed of 
6 corresponding tap states of the 6 controlled devices. 
Although the recall error is very small, the trained 
neural network can not pass the simulation test even 
without any variations. The results show that the bus 
voltages at about half the buses will be out of the spec- 
ified limits of .95 to 1.05 more than 50% of the time. 

The above results indicate that the 13 1/0  training 
data pairs can not train the neural network to be suffi- 
ciently general for all possible states in the 1/0 spaces. 
More training data, or perhaps more complex neural 
net structures, are needed. We know for a given load 
level, the optimal solution of (1) is obtained from all 
possible 288 = 25 x 9 state vectors of the 5 switchable 
capacitors and one 9 tap voltage regulator. That means 
for the same load level, the neural network should map 
all the possible 288 input state vectors, which are cor- 
responding to the 288 possible tap positions of the ca- 
pacitors and the regulator, onto the very same optimal 
tap position vector only. Thus, for each load level, we 
may have 288 pairs of 1/0 training data which are ob- 
tained only for solving (1) once. Accordingly, we finally 
obtained 3744 = 288 x 13 pairs of training data without 
increasing the computational cost. By this approach of 
collecting training data, the number of expansive opti- 
mization processes can be reduced significantly. 

The above training data expansion approach also 
significantly improves the NN controller's performance. 
As mentioned earlier, we have two neural network ap- 
proaches for solving the same problem. Approach A 
only takes the 18 P, Q and V from the 6 measurement 
points as the elements of the input vector. Approach 
B adds the 6 tap positions in addition to the original 
18 elements, which is the same way of composing the 

2Recall error is the error between the actual or desired output 
and NN output by applying the training data only. 
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Figure 6: The frequency of under limit occurrence. 0: 
approach A, x: approach B. 

input vector as in [2]. B can also be considered as intro- 
ducing feedback, which can generally improve control 
accuracy as well known in control engineering. Thus B 
outperforms A which is not unexpected. 

In comparing the results of the two approaches, we 
find that the energy losses for approach B during the 
whole simulation period ranges from 3,618 MWH to 
4,645 MWH among the 20 test cases. The energy loss of 
approach A is very close to B with a maximum of -09% 
larger than B. Since it is too time consuming to obtain 
the true solutions for all the 12,000 samples of all the 20 
cases, we used the true optimal solution for the first 49 
samples of all the 20 cases (thus a total of 980 samples) 
for comparision. The energy losses of both approaches 
are very close to the true solutions' energy losses, which 
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range from 12.65 MWH to 18.64 MWH for all the 20 
cases. The average energy losses of approach A and B 
are about 0.19% and 0.13% higher than the true energy 
losses respectively. Note among the 980 samples, 13 are 
excluded because no true optimal solution exists for 
these severely varied load and distribution patterns. 

Geometrically, the convex hull of the feasible solu- 
tion set of a combinatorial optimization problem with 
constraint conditions is a polytope, which can be com- 
posed by a finite number of hyperplanes. On the other 
hand, the boundary of the output set of a neural net- 
work is generally a closed hypercurve if continuous sig- 
moidal transfer functions are used. Therefore, there 
will be some output points of the neural network lying 
outside of the feasible solution set, which means some 

solutions given by the neural network may not meet the 
constraint conditions. This result is directly from the 
inherited characteristic of neural networks: its ability 
to generalize the whole 1/0 space mapping with only 
partially available training data. 

In some applications, if the infeasible solutions given 
by the neural networks do not violate the constraint 
conditions too much. and if they do not occupy a large 
part of the output space of the neural netxvorks, then 
these solutions may still be accepted. This is a power 
quality issue in terms of our application. We thus stud- 
ied the frequency of the occurrence of out-of-limit volt- 
ages and the magnitude of these voltages in the simu- 
lation. 

Figure 4 and Figure 5 show the frequency of over 
and under voltage limit occurrences for the 20 test 
cases, where DPD stands for Distribution Pattern De- 
viation. The frequency is obtained by adding the num- 
bers of all buses whose voltages are under (or over) the 
limit, and then dividing the sum by the number of t+ 
tal time units (12.000). Thus the vertical axis indicates 
the number of buses that are either over or under the 
voltage limit per time unit. Clearly, for the over limit 
occurrence, approach B has a lower frequency of out- 
of-range voltages for all 20 cases but about the same 
as approach A for the under limit occurrences. We can 
also see that the frequency of over limit occurrences 
is higher than under limit occurrences, and the NN 
controller is sensitive to the DPD for the under limit 
cases, i.e., the greater the DPD, the higher the under 
limit frequency. I t  was found that most of the over 
limit voltages occur on bus 5 that does not have load 
connected. 

Figure 6 and Figure 7 show the average values for 
these out-of-limit voltages. The statistical data show 
the similar rsults for the average out-of-limit voltages 
as the out-of-limit frequency results. Notice that the 
out-of-limit voltages do not exceed the limits by very 
much on average (less than .0025 higher or .0075 lower 
than the voltage limits). Figure 8 shows the voltages for 
buses 5 and 27 at which most over and under voltages 
occur, where LDD stands for LoaD Deviation. (Note 
in the 50% DPD and 100% LDD case, there is a point 
at which no true solution exists.) 

5. CONCLUSION 

Some occurrence of infeasible solutions can result from 
neural networks when solving optimization problems 
with constraint conditions due to the neural network's 
generalization or interpolation property. However, the 
Monte Carlo simulation of the 30-bus test distribution 
system over a large sample size and 20 different vari- 
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ation cases indicates that this frequency may not be 
high. and the average magnitudes of these output de- 
viations from desired or specified values may not be 
significant if the neural network is carefully designed. 
If no infeasible solutions are allowable at all, some extra 
measures need to be taken. One possible approach may 
be to apply more strict voltage limitation to obtain the 
training data though it seems too conservative. 

With fewer training data obtained from the opti- 
mization process, combined with the training data ex- 
pansion approach, we built a relatively good perform- 
ing N N  controller that otherwise would fail if using the 
original training data set only. The results show that, 
proper selection of the training set that covers the in- 
put/output space of the system being modeled is im- 
portant in building a successful neural network. The 
comparison of the two input data design approaches 
also indicates that neural networks with feedback can 
generally outperform the one without feedback. 
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