Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200{degrees}C (Draft)

PDF Version Also Available for Download.

Description

Increasing the melting temperature of HLW glass allows an increase of waste loading (thus reducing product volume) and the production of more durable glasses at a faster melting rate. However, HLW glasses that melt at high temperatures differ in composition from glasses formulated for low temperature ({approximately}1150{degree}C). Consequently, the composition of high-temperature glasses falls in a region previously not well tested or understood. This report represents a preliminary study of property/composition relationships of high-temperature Hanford HLW glasses using a one-component-at-a-time change approach. A test matrix has been designed to explore a composition region expected for high-temperature high-waste loading HLW glasses ... continued below

Physical Description

50 p.

Creation Information

Vienna, J.D.; Hrma, P.R. & Schweiger, M.J. February 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Increasing the melting temperature of HLW glass allows an increase of waste loading (thus reducing product volume) and the production of more durable glasses at a faster melting rate. However, HLW glasses that melt at high temperatures differ in composition from glasses formulated for low temperature ({approximately}1150{degree}C). Consequently, the composition of high-temperature glasses falls in a region previously not well tested or understood. This report represents a preliminary study of property/composition relationships of high-temperature Hanford HLW glasses using a one-component-at-a-time change approach. A test matrix has been designed to explore a composition region expected for high-temperature high-waste loading HLW glasses to be produced at Hanford. This matrix was designed by varying several key components (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, Bi{sub 2}O{sub 3}, P{sub 2}O{sub 5}, UO{sub 2}, TiO{sub 2}, Cr{sub 2}O{sub 3}, and others) starting from a glass based on a Hanford HLW all-blend waste. Glasses were fabricated and tested for viscosity, glass transition temperature, electrical conductivity, crystallinity, liquidus temperature, and PCT release. The effect of individual components on glass properties was assessed using first- and second- order empirical models. The first-order component effects were compared with those from low-temperature HLW glasses.

Physical Description

50 p.

Notes

INIS; OSTI as DE96008204

Source

  • Other Information: PBD: Feb 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008204
  • Report No.: PNNL--10987
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/212394 | External Link
  • Office of Scientific & Technical Information Report Number: 212394
  • Archival Resource Key: ark:/67531/metadc669863

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 6, 2016, 2:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vienna, J.D.; Hrma, P.R. & Schweiger, M.J. Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200{degrees}C (Draft), report, February 1, 1996; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc669863/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.