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EXECUTIVE SUMMARY 

This report addresses uncertainty in Integrated Resource Planning (IRP). IRP is 

a planning and decisionmaking process employed by utilities, usually at the behest 

of Public Utility Commissions (PUCs), to develop plans to ensure that utilities 

have resources necessary to meet consumer demand at reasonable cost. IRP has 

been used to assist utilities in developing plans that include not only traditional 

electricity supply options but also demand-side management (DSM) options. 

Uncertainty is a major issue for IRP, as is shown in Section 2. Future values 

for numerous important variables (e.g., future fuel prices, future electricity demand, 

stringency of future environmental regulations) cannot ever be known with certainty. 

Many economically significant decisions are so unique that statistically-based prob- 

abilities cannot even be calculated. The entire utility strategic planning process, 

including IRP, encompasses different types of decisions that are made with different 

time horizons and at different points in time. Because of fundamental pressures for 

change in the industry, including competition in generation, gone is the time when 

utilities could easily predict increases in demand, enjoy long lead times to bring on 

new capacity, and bank on steady profits. 

The purpose of this report is to address in detail one aspect of uncertainty 

in IRP: Dealing with Uncertainty in Quantitative Estimates, such as the future 

demand for electricity or the cost to produce a mega-watt (MW) of power. A theme 

which runs throughout the report is that every effort must be made to honestly 

represent what is known about a variable that can be used to estimate its value, what 

cannot be known, and what is not known due to operational constraints. Applying 

this philosophy to the representation of uncertainty in quantitative estimates, it is 

argued that imprecis e probabilities are superior to classical probabilities for IRP. 

Section 3 contains mathematical definitions of each. 
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Deciding how to represent uncertainty quantitatively is only one part of the 

challenge. Section 4 discusses how to manipulate two or more uncertain quantita- 

tive estimates. Methods such as combination, conditionalization, and consensus are 

defined and illustrated. In most IRPs it is necessary, at some point, to calculate 

expected values for import ant variables like electricity demand, cost of electricity 

production, and prices of competing fuels. Section 5 presents methods €or calculat- 

ing expected values using imprecise probabilities. The method based upon nonlinear 

optimization can be considered a major technical achievement attributable to this 

research. Lastly, it is also very important to  understand factors underlying uncer- 

tainty in quantitative estimates. Section 6 presents a qualitative framework utilities 

can use to accomplish this task. The report concludes with a discussion of issues 

for future research and deliberations. 
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1. INTRODUCTION 

Decisionmakers in the electric utility industry must deal with uncertainty in 

an efficient and rational manner to ensure the economic survival of utilities and 

meet the expectations of the public. This is an important challenge because many 

decisions have significant impact upon the ability of the utility to compete (e.g., 

cost of new capacity) and satisfy public expectations (e.g., siting and construction 

of new transmission lines). Utility-based decisionmaking is quite difficult because 

many such decisions are one-of-a kind-meaning that uncertainties are difficult if 

not impossible to ascertain statistically-irreversible, and characterized by complex 

and complicated outcomes (Hirst and Schweitzer, 1988). 

This report focuses on uncertainty and IRP in the electric power industry. IRP 

is a process conducted by utilities, typically at the behest of PUCs, to build plans 

to acquire power resources. In practice, integrated resource plans include a mixture 

of traditional supply resources (e.g, coal, oil, natural gas, hydro) and DSM options 

(e.g., conservation) time-of-day pricing). Good IRPs, for instance, are based upon 

forecasts of energy prices and electricity demand (Hirst 1992), only two of many 

aspects of IRP that entail significant uncertainty. 

Accordingly) utilities have begun to address uncertainty in IRP. Section 2. sum- 

marizes utilities) attempts, to date, to accomplish this task. For example, IRPs often 

represent uncertainty qualitatively through the use of cases (e.g., base case, high 

energy demand growth case, etc.). Fewer integrated IRPs use quantitative tech- 

niques to represent uncertainty (e.g., probabilities). Fewer still employ quantitative 

methods to manipulate quantitative uncertainties. 

The motivation for this report is our strong belief that utilities should increase 

their use of quantitative techniques both to represent and manipulate uncertainties 

in integrated resource plans. Four reasons are offered in support of this contention. . 
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(1) Quantitative techniques are very appropriate given the preponderance of uncer- 

tain quantitative variables and estimates in the plans. (2) The process of quanti- 

fying uncertainty about an estimate, yields a deeper appreciation into complexities 

surrounding the estimate. (3) Quantitative techniques, if used properly, represent 

explicit and rigorous statements of uncertainty that can be readily communicated 

and evaluated by others. (4) Quantitative representations of uncertainty (e.g., ex- 

pected values) are required inputs for quantitative decision analytic methods, which 

should be at the foundation of important resource planning decisions. 

This report is expressly written to assist utilities and analysts incorporate quan- 

titatively uncertainty in IRPs. To provide a further focus, the report only deals with 

one general quantitative paradigm: probability. However, as Section 3. indicates, 

the report takes a broad view of probability. The section contains a brief history 

of the concept (Section 3.1) and provides a mathematical overview of “classical 

probability (Section 3.2).” 

A theme which runs throughout the report is that one should honestly represent 

what one knows and no more using the probabilistic paradigm. Oftentimes, and we 

would argue in the preponderance of cases in IRP, classical probability is too re- 

strictive, forcing one to overstate one’s knowledge about the value for an important 

variable. Thus, we argue for the use of imprecise (e.g., upper and lower) probabili- 

ties. Sections 3.3 and 3.4 present definitions of upper and lower probabilities, and 

upper and lower probability distributions, respectively. The balance of this section 

discusses how to construct imprecise probabilities and provides examples. 

Section 4 addresses the manipulation of quantitative uncertainties in general and 

imprecise probabilities in particular. The section begins by presenting a conceptual 

model that encompasses different situations where one would need to synthesize two 
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or more imprecise probabilities (Section 4.1). The conceptual model is needed to  

define quantitative methods such as combination, conditionalization, and consensus. 

As the reader peruses this report, it will be evident that we have tried to syn- 

t hesize general discussions of uncertainty, detailed mathematical presentations, and 

straightforward examples. Section 4. exemplifies the approach. Following the 

discussion of the conceptual model is a short note on the mathematics of condi- 

tionalization and imprecise probability (Section 4.2). Then several examples are 

presented (Section 4.3). 

In many ways, the most important quantitative challenge facing IRP analysts 

is the calculation of expected values. Such calculations are straightforward using 

classical probabilities. Section 5. demonstrates that there are well-understood 

methods to calculate expected values using lower and upper probabilities. One such 

method, known as Choquet Expected Values, is discussed in Section 5.1. There are 

also opportunities to extend these methods to more general imprecise probabilities 

and to frameworks of importance to utility analysts. Section 5.2 illustrates this 

by introducing a new method to calculate upper and lower expected values via 

nonlinear optimization for decision-tree applications. A detailed example of this 

method appears in Section 6.3. 

Quantitative estimates of uncertainty, especially those based on subjective judg- 

ments, are challenging to develop. Section 6. provides assistance to  those needing 

to specify imprecise probabilities. Presented first, in Section 6.1 is a presentation 

of a qualitative frame (i.e., checklist) one can use to describe why there is uncer- 

tainty in a quantitative estimate. For example, uncertainty may arise due to factors 

under the analyst’s control, such as data quality or the application of appropriate 

estimation techniques. On the other hand, a large degree of the uncertainty may 

be inherent in the estimation problem itself and therefore beyond the control of the 
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analyst. In those cases, it is appropriate to represent uncertainty using imprecise 

probabilities. 

In any case, the frame can indicate to utilities what can be done, if anything, to 

reduce the uncertainty associated with key planning variables. Implications of this 

realization on the cost and value of information are discussed in Section 6.2. The 

section concludes with a discussion of elicitation issues and examples of using the 

frame. 

It is well known in the physical sciences that most of the easy problems have 

been solved. The remaining problems are much more challenging conceptually and 

oftentimes require more sophisticated and expensive equipment and experiments. 

An analogy can be made to  uncertainty and decisionmaking. As utilities and PUCs 

strive to make better decisions, to fine tune utility investments and operations to 

reduce costs and increase service to the public, the problem of decisionmaking gets 

progressively, if not exponentially, more difficult. 

As this report points out, dealing with uncertainty is not just an exercise in 

identifying what features in the utility environment cause uncertainty. To fully 

appreciate the topic, one needs to master powerful but oftentimes subtle concepts 

and understand mathematical presentations and methods. We believe that the 

effort is well worth it. 
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2. OVERVIEW OF UNCERTAINTY AND IRP 

2.1 ASPECTS OF UNCERTAINTY IN IRP 

IRP is a process by which utilities and PUCs work to establish mutually accept- 

able plans for meeting the public’s need for utility services. Specifically, integrated 

resource plans detail how utilities will supply electricity services to meet forecast 

demands. In the electric utility industry, supply options traditionally focused on 

building new power plants. IRP has evolved to include DSM, renewables, and other 

energy sources in the list of supply options (Schweitzer, Hirst, and Hill 1991). 

The art of IRP has evolved to where suggestions can be offered about how to 

develop good integrated resource plans. Hirst (1992) states that plans need to: be 

technically competent; present adequate, detailed, and consistent (with long-term 

plans) short-term action plans; incorporate the interests of various stakeholders; and 

be clear and comprehensive in present ation. Technically competent plans address: 

energy and demand forecasts; supply and demand resources; resource integration; 

and uncertainty, which is the topic of this report. 

Indeed, a strong argument can be made that uncertainty dominates every as- 

pect of IRP. Hirst and Schweitzer (1990) surveyed numerous plans and found that 

uncertainties abound (Table 2.1). The uncertainties pertain to issues internal to 

utilities and relate to factors external to the utility, which are beyond utility con- 

trol. Import ant uncertainties, for example, involve the utility’s cost of providing 

power and forecasting load growth. 

To that list should be added uncertainty concerning the future of the util- 

ity industry. Numerous factors are pressuring the industry to change (Tonn and 

Schaause r ,  1994; Dasovich et al., 1993). These include increasing competition in 

generation and potential competition in the form of retail wheeling. It is unclear 
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Table 2.1. Key Uncertainties in Integrated Resource Planning 

Uncertainties Internal to Utilities 
Type, availability, and/or costs of new generating facilities 
Availability and/or costs of existing generating facilities 
Availability and/or costs of power from life-extension projects 
DSM capability 
Availability of renewable energy resources 

Uncertainties External to Utilities 
Load Growth 
Fuel Prices 
Availability and/or costs of purchased power 
Actual savings from DSM and related efforts 
Regulatory policies 
Inflation and interest rates 
Environment a1 constraints 

(Adapted from Hirst and Schweitzer, 1990, p.139) 

whether these forces will result in: a substantially decentralized, vertically dein- 

tegrated industry; a substantially more centralized, vertically integrated industry; 

or an industry little changed from the situation today, which is still dominated by 

utilities in the areas of generation, transmission, and distribution, although less so 

in generation than in the past. 

The important point for this research is that the need to handle uncertainty is 

even more important as the utility industry heads toward the next century. Irre- 

gardless of whether PUCs continue to mandate IRP, utilities will have an increased 

need to conduct their own strategic planning exercises to ensure organizational sur- 

vival. PUCs and other governmental bodies will also have an increased need for 

analysis to ensure that current government regulations are appropriate for the util- 

ity industry of the future and to predict the consequences of proposed regulations. 

Central to strategic planning, policy analysis, and IRP is the representation and 

management of uncertainty. 
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2.2 UNCERTAINTY AND IRP: CURRENT PRACTICE 

Approaches currently used to handle uncertainty in IRP are summarized in Hirst 

(1992)) Hirst and Schweitzer (1990), and Hirst et al. (1990). Five approaches have 

been explicitly found to be used in IRPs: scenario analysis, sensitivity analysis, 

portfolio management, probabilistic methods, and worst-case analysis. Table 2.2 

summarizes these techniques. Hirst (1992) presents examples of actual plans that 

use each technique. 

Table 2.2. Approaches currently used to handle uncertainty in IRP 

Scenario 

Sensitivity 

Portfolio 

Probabilistic 

Worst - C ase 

Alternative, internally consistent, futures are constructed, and 
then resource options are identified to meet each future. Best 
options can then be combined into a unified plan. 
Preferred plan (combination of supply options) is identified. 
Key factors are then varied to see how the plan responds to 
these variations. 
Multiple plans are developed, each of which meets different 
corporate goals. Often, these plans are then subjected to  sen- 
si t ivit y analysis. 
Probabilities are assigned to different values of key uncertain 
variables, and outcomes are identified that are associated with 
the different values of the key factors in combination. Results 
include the expected value and cumulative probability distri- 
bution for key outcomes, such as electricity price and revenue 
requirements. 
Utility creates a plan to meet an extreme set of conditions 
(e.g., high load growth and high fuel prices) and later learns 
that it faces an entirely different set of conditions (e.g., low 
load growth and low fuel prices). The utility then adjusts its 
resource acquisitions to meet the newly perceived conditions. 

(Source: Hirst and Schweitzer, 1990). 

Scenario analysis appears to be the most favored technique. Utilities often create 

cases (e.g., Base, High Load Growth, Low Load Growth) and prepare forecasts 

and plans for each of the cases. Sensitivity analysis involving key variables is also 

extensively used. Use of probabilistic methods is limited and no case was found 
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where autility used advanced probabilistic methods, such as discussed in the balance 

of this report. 

Hirst and Schweitzer (1990) also report on how utilities react to uncertainties in 

IRP. They list five basic strategies: (1) ignore uncertainty, (2) plan very carefully, 

' (3) defer decisions, (4) sell risks to other parties, and (5) adopt flexible strategy that 

allows for easy and inexpensive changes. In the long-run, ignoring uncertainty and 

options theory as a matter of course will imperil utilities and their customers. The 

remaining three strategies, on the other hand, have merit. Future research needs to 

evaluate how well utilities apply these three strategies. 

2.3 COMMENTS 
In summary, it is important to point out that utilities are pursuing two com- 

plementary approaches to handling uncertainty. The first approach can be labeled 

technical and deals with how to represent uncertainty quantitatively and manage 

uncertainty in analytical exercises. Thus, it has been found that utilities make use 

of probabilities , sensitivity analysis, and worst case scenario analysis. 

The second approach is more strategic and process oriented. It relates to at- 

tempts to minimize risks associated with uncertainty and results in reducing uncer- 

tainty, not necessarily about what might happen in the future, but with respect to 

the negative consequences of decisions. Thus utilities defer decisions, sell risks to 

others, and adopt flexible plans. 

In general, the utility industry has begun to employ rational and effective tech- 

niques for handling uncertainty in integrated resource planning. However, we see 

several areas where the utility industry could improve its efforts. 

(1) Quantitative methods for representing and manipulating uncertainty need 

wider use. Few of the IRPs make use of probabilistic methods and none use advanced 

probabilitistic methods. Quantification of uncertainty has two major benefits. First, 
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the process of quantification requires considerable introspection and analysis, which 

will help ensure that uncertainties receive honest and rigorous considerat ion. Sec- 

ond, numerous, powerful met hods for manipulating uncertainties and making deci- 

sions require quantitative uncertainties. This is not to say that qualitative reasoning 

is unimportant; the force of qualitative reasoning can be enhanced through the use 

of quantitative met hods. 

(2) IRPs need to be set within the larger utility/PUC decisionmaking context. 

Should IRPs encompass long term strategic directions and strategic decisions in 

addition to actions that can be taken in the near-term? Should IRps actually 

document strategic decisions which in turn effect the scope of action plans? We 

cannot answer these questions in this report but do argue that all planning and 

decisionmaking activities within a utility need to be coordinated in an effective 

fashion. 

(3) The plans themselves could incorporate more strategies to reduce uncertain- 

ties. For example, consideration should be given to producing robust plans, which 

are plans that will not collapse if one or two aspects fail to materialize. 

(4) The way that uncertainty is communicated in the plans needs to be im- 

proved. Figures and tables are often confusing to interpret. It is difficult enough to 

communicate sophisticated technical information to time- and attention-constrained 

utility executives and PUC commissioners in the best of conditions. In addition, 

care needs to be taken to clearly communicate information to a public, that cannot 

be expected to be technically literate. 

This report focuses solely on the first issue. 
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3. REPRESENTING UNCERTAINTY 
IN QUANTITATIVE ESTIMATES 

3.1 A BRIEF HISTORY OF PROBABILITY 
“Probability” entails more than it seems to most people. It is a concept with 

a long history, controversial interpretation, and significant importance to people 

who need to represent uncertainty in quantitative estimates. Briefly summarizing 

the history of probability is a useful exercise in a report about IRP for two major 

reasons. (1) The discussion will help build a level of comfort with the topic for 

those who come to this discussion with a limited background in probability. (2) 

The ideas espoused in this report, including the use of imprecise probabilities, are 

best appreciated within the broader historical and evolutionary context of the con- 

cept. Within any field of endeavor, inertia supports the most familiar theories and 

formulations. In this case, inertia supports classical probability. However, moving 

to a more general notion of uncertainty, namely imprecise probability, is actually 

not a radical step at all if seen in the long-run and when one understands that 

the original ideas about quantitative probability were more similar to imprecise 

probabilities than classical probability. 

To begin the story, it is interesting to note that prior to the 1660s, the concepts of 

chance and probability were unquestionably distinct. According to Hacking (1975), 

probability was associated with opinion and was not mathematical. For example, 

an esteemed religious authority could argue that a proposition that is “probable 

is impossible,” meaning that the proposition has a favored opinion but cannot 

be true. Chance, on the other hand, had mathematical qualities because it was 

associated with games of chance. Thus, historically, the word ”Probability” had a 

much different meaning than it has today and the concepts of chance and probability 

were not interchangeable. 
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How then, did the two concepts become synonymous? It took many centuries 

for humans to understand that: opinion could be founded, in part, on knowledge; 

that knowledge is not always certain; and that an analogy could be made between 

one’s uncertain knowledge and playing a game of chance. These observations arose 

from the historical division between the high sciences and low sciences (Hacking 

1975), the former encompassing mathematics and astronomy (and presumably no 

uncertainty) and the latter alchemy, geology, and medicine (and presumably much 

uncertainty). 

To practice a low science, one used signs from nature. For example, physicians 

used signs to diagnose patients. Unfortunately, for the ancient patients, ancient 

physicians based diagnoses on signs that arose from the cultural milieu, not on 

physical symptoms that could be “statistically” associated with certain diagnoses 

and appropriate treatments. 

Hacking finds the first written references that signs are derivable from nature 

in the 1600s. The earliest reference is from Hobbe’s H u m a n e  Nature,  published in 

1650, where he says that “if the signs hit 20 times for one missing, a man may lay 

a wager of twenty to one of the event; but may not conclude it for a truth.” The 

book Port Royal Logic (1662) contains the first use of the word ”probability” to 

represent what we might label epistemic or quantitative probability. Pascal made 

the first link between games of chance and quantitative notions of probability with 

his wager about the existence of God. Thus began the co-mingling of the concepts 

of chance and probability that continues to this day. 

Shafer (1978) attributes the most important role in the mathemization of prob- 

ability to Jacob Bernoulli. In his 1713 manuscript, Ars Conjectandi,  Bernoulli was 

concerned with different types of arguments to support or reject a proposition. A 

pure argument provides support for the proposition but does not provide support 
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for competing propositions. A mixed argument could provide support for several 

competitive propositions. 

Examples of pure and mixed arguments can be made with respect to the fol- 

lowing proposition, S which is important in IRP: 

S: Electricity demand in the service area will increase faster than 
economic growth for the next twenty years. 

The following is a pure argument, AP, in favor of this proposition: 

AP: The use of elect ricity-intensive information terminology will 
grow at a faster pace than overall economic growth for the next 
twenty years. 

The following is a mixed argument, AM,  in favor of this proposition: 

AM: Environmental concerns will continue to increase over the 
next twenty years. 

A' is a pure argument because at least one component of electricity demand, 

that related to the use of information technology, will grown faster than the overall 

rate of economic growth and there are no conditions associated with this argument 

that would lead one to other conclusions. AM is a mixed argument because en- 

vironmental concerns could lead to increases and decreases in the rate of change 

in electricity demand. For example, increasing concerns could lead to more en- 

vironment ally benign manufacturing technologies which could be more electricity 

intensive than previous technologies. On the other hand, increasing environmental 

concerns could lead to an extreme conservation ethic which would involve high levels 

of energy, and therefore electricity conservation. 

In addition to presenting the outlines for these types of arguments, Bernoulli 

presented mat hematical formulas to implement quantitatively each kind of argu- 

ment. For example, the probability associated with a pure argument for proposition 

S is the number of cases it proves correct, a, divided by the total number of cases, 

n : P ( S )  = a / n .  This is the familiar, frequency-based definition of probability. 
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Because a pure argument does not specify that unallocated probability mass be as- 

signed to the complement of s, p@), with respect to a pure argument, P(S)  < 1.0, 

where a probability of 1.0 (z.e., P ( S )  = 1.0) indicates complete certainty about the 

truth of a proposition. 

This avenue of thought, that is, the frequency-based notion of probability, was 

pursued by many others, including DeMoivre (1718) and Bayes (1763), who were 

interested in the calculation of annuities and actuarial tables. This work lead to the 

development of classical probability (discussed in Section 3.2) and modern statistics. 

It should be noted, however, that Bernoulli also pursued another avenue of 

thought in Ars Conjectani, related to combining probabilities of various types of 

arguments, which might be necessary with respect to synthesizing pieces of evidence 

in a court of law or to synthesizing various signs to render a medical diagnosis. For 

example, to combine 2 pure xguments related to the truth of S, Bernoulli proposed 

the following: 

P ( S )  = 1 - (E1 - P1(S/Ar)][1 - Pz(S/A,P)]. . . [l - Pz(S/A,P)]}. (3.1) 

Bernoulli also proposed equations to combine numerous mixed arguments, and one 

pure and one mixed argument, which is: 

P ( S )  = P(S/Ap)  + [l - P(S/AP)]P(S/AM).  (3-2) 

According to Shafer (1978), Lambert (1764) was the only historical figure to 

extend Bernoulli’s work regarding the combination of arguments. For example, 

Lambert found fault with Equation 3.2 because it does not adequately incorporate 

arguments against S. He proposed the following more general equation: 
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where Pi(S) is the probability of S being true for argument i, Qi(3 )  is the proba- 

bility of ‘s, and Pi(S) + Q@) 5 1. 

It is unclear why this avenue of thought died out in the 1700s. However, for 

our discussion, it is interesting to note that these ideas resurfaced in the 1960s 

and 1970s as people became interested again in combining arguments (e.g., in ex- 

pert systems). For example, Equation 3.3 is a simple version of Dempster’s (1967) 

method of combining upper and lower probabilities and Shafer’s (1976) method of 

combining belief functions, which are a class of imprecise probabilities. Shortliffe 

(1976) rediscovered Equation 3.2 and made it the cornerstone of his certainty factor 

theory, which today is a popular method of managing uncertainty in expert systems. 

A theme that runs through most of the research recently, and which is found in 

Bernoulli’s and Lambert’s ideas, with respect to  combining probabilities associated 

with arguments is that the probabilities need not be additive. That is, P(S) + 
P ( 3 )  5 1, which is known as “nonadditivity,” is an acceptable constraint. This 

is in contrast to classical probability, where it is assumed that P ( S )  + P(3) = 1, 

which is known as “additivity.” 

What does this seemingly arcane point have to do with IRP? The answer is 

rather complex. To begin with, IRP encompasses both of Bernoulli’s avenues of 

thought about probability. On one hand, much use is made of databases and statis- 

tics calculated within the formal paradigm of classical probability. On the other 

hand, much of IRP is an argumentative process. The development of propositions 

and pure and mixed arguments is a natural part of the IRP process. To quan- 

titatively represent and combine probabilities associated with propositions, based 

on the above presentation, we argue that a less restrictive view of probability, (i.e. 

non-additivity ) , is required. 
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It will not do, however, to advocate the use of two probability paradigms in 

IRP, one for frequentistic database applications, and one for more subjective, com- 

bination of argument applications. This is why we argue for the use of imprecise 

probability, which Section 3.3 points out, is a generalization of classical probabil- 

ity. Within the imprecise probability domain, one can still maintain the additivity 

constraints with respect to statistical applications, although authors such as Walley 

(1991) argue this is not necessary or even prudent. One can also have flexibility 

in representing subjective knowledge that accompanies nonadditive probabilities. 

These points will become clearer after the discussions on classical probability, up- 

per and lower probabilities, and upper and lower distribution functions, in the next 

three subsections) respectively, and through the presentation of examples (Section 

3.6). 

3.2 CLASSICAL PROBABILITY 

This section lays out the mathematical underpinnings of classical probability 

which, as discussed in Section 3.1, have their historical roots in the work of Bernoulli. 

If 0 is a set of possible states of the world ( e a . ,  201, tu2 . . . ton), uncertainty about 

which state w E R is the true state is often modeled by a probability measure P 

defined on some class of subsets (called events) of R. The number P ( A )  assigned 

to the event A represents the probability that the true state of affairs belongs to 

the set A. The probability measure P is said to be objective if P(A)  represents, 

in some sense, the relative frequency with which the true state belongs to A. If, 

on the other hand, P(A)  reflects the odds that one would consider fair (either as 

bettor or bookmaker) for a bet that the “the truth lies in A,” then P is said to be 

subjective. The latter types of probabilities can also be elicited directly from people 

in a variety of ways (Wallsten 1983). 
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Axiomatic accounts of probability theory always postulate that 0 5 P(A)  5 1 

for all events A, with P(Q) = 1. In addition, additivityof P(AnB = 0 + P(AUB) = 

P(A)  + P(B) )  is always postulated) and countable additivity (P(A l  U A2 U - -) = 

P(A1) + P(A2) + . . a ,  for every infinite sequence A I ,  Aa, . . . of painvise disjoint 

events) is often postulated (always, among mathematicians). As a consequence of 

these postulates, one always has P(A) + P ( 2 )  = 1 where 51: := {w E $2 : w 6 A ) ,  

and so P(0) = 0. 

It is clear why one might demand additivity of an objective probability. Such 

probabilities model relative frequencies, and relative frequencies are additive as a 

matter of simple arithmetic. As for requiring additivity of subjective probabili- 

ties) there are arguments, which we shall not pursue, that non-additive subjective 

probabilities commit one to certain incoherent betting behavior (Skyrms, 1975). 

The application of classical probability theory requires that one first complete 

a demanding assessment exercise: each event must be assigned a single precise 

probability. But it is clear that the evidence is very often insufficient to ground such 

an assessment. For example) with respect to objective probabilities, Fine (1973) 

points out that there are a number of subjective judgments required to estimate an 

“objective” probability) (e.g., defining R and choosing the sample population). As 

discussed in Section 6.1, there are other factors which could produce uncertainty 

in an estimate beyond the variability in the data used to calculate it, (e.g., suspect 

theory, low quality data, lack of data, etc). 

With respect to  subjective probability, an important problem is the expression 

of strength of evidence concerning an estimate. According to Keynes (1921), as new 

evidence about a proposition accumulates, “The magnitude of the probability of the 

argument may either decrease or increase) but something seems to  have increased 

in either case-we have a more substantial basis upon which to rest our conclusion 
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(Keynes P.71).” It is not possible to represent both a probability and strength of 

evidence with one number. 

Popper (1974) provides an example related to tossing a coin. Prior to any toss, 

a reasonable subjective probability of heads arising would be 0.50. Now, assume 

that this coin is tossed a thousand times, and the statistically derived probability 

is 0.50. Popper states that using subjective probability, there is no way to indicate 

the accumulated evidence. The next section explores one way of overcoming this 

problem. 

3.3 UPPER AND LOWER PROBABILITIES 

A natural way to relax the demand for a single number expressing the probabil- 

ity of an event A is to allow assessment of uncertainty by an interval [P(A) ,P(A) ] ,  

where 0 _< P(A)  5 P(A)  5 1. The numbers P(A)  and F(A) ,  called respectively, the 

lower and upper probabilities of A, are chosen so that one is, given present evidence, 

confident that the probability of A is neither less that P(A)  nor greater than P ( A ) .  

In a state of complete ignorance, it is entirely appropriate to set P ( A )  = 0 and 

P ( A )  = 1. At the other extreme, where one knows the objective probability P(A)  

of A, as in the case of sampling from a known population, it may be appropriate 

to set P ( A )  = P(A)  = F(A).  This formulation avoids the problem created by the 

principle of insufficient reason, and noted by Popper, where under complete igno- 

rance, one assumes all events in R have the same probability. Once one accumulates 

evidence, such probabilities may commence from the data, but it is unreasonable 

to assume so at the outset. We define imprecise probability as containing a family 

of axiomatic generalizations of classical probability based on the concepts of lower 

and upper probability. 

- 

What properties, in addition to those indicated above, might lower and upper 

probabilities possess? Suppose that E( A) and P( A) are construed objectively, (i.e., 
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as lower and upper bounds on the unknown relative frequency of A) .  Then, at the 

very least, we should have 

- P(0) = F(0) = 0 and p(Q) = p(Q) = 1, 

as well as monotonic i ty  of and P,  i.e., 

(3-4) 

And if the bounding functions and P are to be useful, there ought, of course, 

to exist at least one probability measure P satisfying 

- P ( A )  5 P(A)  5 P ( A )  for all events A. 

When R is finite, checking that (3.6) holds for some P amounts to checking that cer- 

tain linear inequalities have a solution, which is easily done by linear programming 

if R is not too large. 

Interpretations of e and in terms of upper and lower odds make it reasonable 

to demand that (3.4), (3.5), and (3.6) be satisfied in subjective contexts as well. 

In particular, failure to satisfy (3.6) guarantees that one will suffer a sure loss 

(Walley 1991). 

In what follows, therefore, we shall call functions 2 and a pa i r  of lower 

and upper probabiZity measures if they satisfy (3.4), (3.5), and (3.6). It should be 

noted that some authors are more stringent in their use of these terms, requiring in 

addition the properties of complementarity,  Le., 

-- 
- P(A) + P ( A )  = 1 for all events A, 

superadditivity of E, i.e., 

Ai A2 = 0 * P(Ai  U A2) 2 12(Ai) + P ( A 2 )  
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and subadditivity of p, i.e. 

But the above three properties, while clearly desirable - they are properties 

always possessed by the “tightest possible” lower and upper bounds defining the 

same class of probability measures P as (3.6) - are not essential. If for some reason 

it is important to satisfy (3.7)-(3.9), one can, at least for “small” finite sets Q, 

upgrade a pair of upper and lower probability measures and P to a pair e#, 
P# satisfying (3.4)-(3.9), with .P(E) 5 e # ( E )  5 P#(E) 5 F ( E )  for all events E. 

Using standard linear programming, one simply computes 

p#(E) = min{P(E) : P E P(-P,P)} ,  and 

P ( E )  = maz{P(E)  : P E P ( Z , F ) } ,  

where P(p,P)  is the closed, convex polyhedral set given by 

P(.P,p) := { P  : P is a probability measure and 

- P(A)  5 P ( A )  5 P(A) for all events A) .  

(3.10) 

(3.11) 

(3.12) 

It is perhaps worth mentioning that one can avoid assessing values of both 

- P and F.  For example, one might only assess all lower probabilities I’(A), with 

- P(0) = 0, Z(52) = 1, and monotone (3.5), and such that there is some proba- 

bility measure P for which P ( A )  5 P(A)  for all events A (again, check by linear 

programming if B is small enough). One then simply defines F(A)  = 1 - e@) for 

all events A. It follows that and satisfy (3.4)-(3.6), and (3.7) as well. 

The idea of upper and lower probabilities is not new, as we have seen. In addition 

to the early 18th century writings the ideas appear in the work of Mill (1843) and 

Boole (1854). In our own century Keynes (1921) and Koopman (1941), as well as 
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a number of other Zholars, have ursued the idea of representing uncertainty by 

imprecise probabilities. In recent years, this idea has attracted substantial interest 

(especially in the disciplines of artificial intelligence, economics, and statistics), as 

the following brief recent history indicates. 

(1) Artificial intelligence. Students. of artificial intelligence, particularly those 

concerned with expert systems, were the first to endorse the use of imprecise prob- 

abilities in substantial numbers, influenced strongly by Shafer’s pathbreaking book, 

A Mathematical Theory of Evidence (1976). Shafer’s Belief Functions [See section 

(4.5) and (4.7)], an abstraction of a highly structured class of lower probabilities 

first studied by Strassen (1964), provided a substantial generalization of classical 

probability. It has become clear, however, that one often needs an even more gen- 

eral class of uncertainty measures to honestly represent the evidence at hand (e.g., 

upper and lower probabilities). 

(2) Economics.  Savage’s (1972) axiomatic treatment of decisionmaking under 

uncertainty, with its rationalization of preference based on expected utility, is justly 

famous among decision theorists. But almost from its appearance, criticisms have 

been directed at the stringency of some axioms, particularly the so-called “sure- 

thing principle.” In the mid-1980’~~ Schmeidler (1986) constructed an account of 

decisionmaking under uncertainty using rather weak axioms. In Schmeidler’s theory, 

preference is based on expected utilities calculated with respect to lower and/or 

upper probabilities using the “Choquet integral,” [see section (3.5)] which does not 

require additivity of the measure in question. The best account of this penetration 

of imprecise probabilities into the realm of decision theory is Fishburn’s Nonlinear 

Preference and Utility Theory (1988). 

(3) Statistics. Shafer’s A Mathematical Theory  of Evidence, mentioned above, 

was actually addressed to statisticians, despite having found its most appreciative 
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audience in the AI community. With the publication of Walley’s (1991) magisterial 

treatise, Statist ical Reasoning w i th  Imprecise Probabilities, it is likely that imprecise 

probabilities will play an increasing role in statistical inference. Interestingly, the 

updating of imprecise probabilities in the light of new evidence admits of a number 

of different met hods, which generalize ordinary conditionalization of precise proba- 

bilities in various ways. 

In summary, the use of imprecise probabilities is no longer the untested, avant- 

garde idea that it was several decades ago. At the same time, it does not replace 

classical probability where evidence supports precise assessment of uncertainty. T h e  

theory of imprecise probabilities as n o t  a competitor t o  classical probability, but rather 

a generalization of classical probability, reducing t o  the  latter w h e n  upper and lower 

probabilities coincide. 

3.4 UPPER AND LOWER DISTRIBUTION FUNCTIONS 

Much of the similar work on imprecise probabilities assumes R is discrete. This 

is understandable given that much of the effort focused on expert systems, where R 

is composed of clearly discrete diagnoses (e.g., medical diagnosis). However, with 

respect to IRP, there are numerous instances where R is continuous (e.g., future oil 

prices). Therefore, this section addresses upper and lower distribution functions. 

Let R be equipped with a probability measure P. A random variable o n  R is 

a numerical labeling of the outcomes in R, i.e., a function X : R + R, the real 

number system. Under certain mild restrictions, which need not concern us here, a 

random variable X possesses a cumulative distribution func t ion  (cdf) F : R + [0,1] 

with  respect t o  P ,  where 

F(x) := P({w E 0 : X ( W )  5 2)) = “P(X 5 x)”, for all x E R. 
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We recall that x1 5 x2 + F(x1) 5 F(xz), that F(x) + 0 as ~ t :  + -m and 

F ( z )  + 1 as x ---$ 03, and that F is “right continuous,” Le., F(a: + h)  + F(x) as 

h + 0 through positive values. 

The generalization of this idea to imprecise probabilities is straightforward. If 

- P and P are a pair of lower and upper probability measures, we define 

- F(x) = E({w E R : X ( w )  5 x}) = “P(X 55)’’ (3.14) 

and 
- - 
F(x) = P({w E R : X ( w )  5 x}) = “P(X 5 x)” (3.15) 

and call and F,  respectively, the lower and upper cumulative distribution functions 

(lcdf and ucdf) of X .  Clearly, if P E P(p,p) and F is the cdf of X with respect to 

P ,  then F ( z )  5 F(x) 5 F(x) for all x E R. 

The notion of random variables and their cdfs described above represents a 

comprehensive, mathematical formulation. In much applied work, s2 = R, and 

X ( x )  = x. In such cases the cdf F is usually directly assessed, often in the form 

of a density function f where F(x) = s_”, f ( t ) d t .  One can obviously also directly 

assess lcdfs and ucdfs on R, taking care simply to ensure that 0 5 F(x) 5 F(z) 5 1 

for all x E R, that F(x) and ”r((., + 0 as x + -m, and F ( z )  and F(x) + 1 as 

x 4 00, and that E and F are right continuous. 

3.5 CHOQUET EXPECTED VALUES 
An extremely important task in IRP is the calculation of expected values. This 

section presents for review how to calculate expected values using classical proba- 

bilities and then presents the method to calculate expected values using lower and 

upper probabilities. 

Suppose that the random variable X : R t R takes on only a finite set 

If P is a probability measure on R, then 
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the expected value o f X  with respect t o  P, denoted €.p(X) ,  is given by the familiar 

formula 
n 

E p ( X )  = c2i P ( X  = Si), 
i=l 

where P ( X  = 2;) is an abbreviation for P({w E R : X ( w )  = z;}). 

(3.16) 

Now, by additivity of P we have, for 1 5 i 5 n - 1, that P ( X  = xi) = 

P ( X  2 xi) - P ( X  2 zi+1), so an equivalent (though slightly odd looking) formula 

for € p ( X )  is given by 

n- 1 

€44 = Zi{P(X L Xi) - P(X L Q+1)} + Z,P(X = 2,) 
i= 1 

n 

= 2 1  + C(22 - Z+l)P(X 2 Si). 
i=2 

(3.17) 

Now if and are a pair of lower and upper probability measures on a, then, 

motivated by (3.17), we define € p ( X )  - and € F ( X )  by the formulas 

and 

(3.18) 

(3.19) 
n 

+(X) := 2 1  + E(.; - Si - l )P(X  2 Xi). 
i=2 

We call € p ( X )  - and €F(X) the Choquet eqec ted  values of X with respect t o  

and p. The above formulas are simply special cases of the general formula, valid 

for every random variable X, 
co 0 

&(X) = 1 a ( X  2 s)d2 - S_,Il- a ( X  2 4 d 2 ,  

where Q = F', F,  P(Fishburn, 1988, p. 189). 

Since the quantities zi - xi-1 appearing in (3.18) and (3.19) are positive, it 

follows immediately that 

(3.20) 
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and so, with 

- E ( X )  := min{Ep(X)  : P E P(l',P)}, and 

€(X) := m a z { E p ( X )  : P E P( l ' ,F) } ,  (3.21) 
- 

it follows that 

& ( X )  - 5 E ( X )  5 qx) I EF(X).  (3.22) 

So the crucial quantities g ( X )  and r ( X )  may be conservatively approximated, 

respectively, by the easily computable quantities Ep(X)  - and €F(X) .  Indeed, in 

certain cases, we are guaranteed to have € p ( X )  - = E ( X )  and +(X) = z ( X ) .  This 

always happens, for example, if the pair E, 
following stronger version of superadditivity, called 2-monotonicity: 

satisfy (3.4)-(3.7) and satisfies the 

(See Chateauneuf and Jaffray, 1989; and Thorp, McClure, and Fine, 1982.) Several 

common constructions of imprecise probabilities yield lower probability measures 

satisfying (3.23), as we show in Sections 3.6 and 4.3. 

3.6 EXAMPLES 

3.6.1 Example 1. Acid Rain Regulations 
The context is a major electric utility located in the Eastern United States. 

The utility is investing in environment controls to reduce the emissions of SOX 

and NOx to reduce acid rain. Title IV of the 1990 amendments to the Clean Air 

Act (CAA) requires controls to be in place by 1996 or 2000. The National Acid 

Precipitation Assessment Program (NAPAP) will report to Congress in 1996 on 

the societal costs and benefits of Title IV, and every four years thereafter. An 

important question facing the utility, and one which significantly affects the next 

IRP, is whether Congress will again change the acid rain provisions of the Act. 
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Assume that the solution set, R, is discrete and has three members, {stricter 

provisions (sp), no change (nc), less strict provisions (lsp)}. Hard evidence support- 

ing any of these possibilities is non-existent. There are no published statements from 

any member of Congress on future legislative intentions with regard to Title IV. In 

addition, the content of environmental legislation is highly dependent on the party 

occupying the White House, another unknown. Due to the large uncertainties and 

the subjective nature of the required judgments) lower and upper probabilities are 

an appropriate method to represent uncertainty about R. 

There are several approaches to constructing imprecise probabilities. The ap- 

proach chosen for this example is based upon eliciting lower probabilities over the 

power set of $2, which as Table 3.1 indicates, has seven members. The task for the 

analyst is to assign lower probabilities to each set, related to the lower probability 

that the true outcome is in the set. R is always assigned a lower probability of 1.0 

because, by definition, the truth must reside in this set. 

Assume an analyst supplied the lower probabilities (E)  found in the second 

column of Table 3.1. What do they tell us? Overall, the analyst is confident that 

the truth is contained in the fourth set, that Congress will issue stricter provisions 

or not change the current provisions. The analyst was clearly uncomfortable with 

assigning substantial lower probabilities to the sets with only one member. A small 

lower probability was assigned to set 2, {no change}, if only because legislature 

inertia hinders change of any sort. The analyst doesn’t give much credence to 

Congress’ lessening the provisions of Title IV. 

The third column of Table 3.1 provides the upper probabilities for the power 

set of R, as calculated by (3.7). A quick review of Table 3.1 indicates the follow- 

ing. First, the analyst did not specify a classical probability function, for example, 

because p ( s p )  # P{sp) .  Second, the function is monotonic because in every case 
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Table 3.1. Lower and upper probabilities assigned by an analyst in the acid rain example 

1- @PI 
2. {nc} 

3. {ISPI 
4- {SP, nc> 
5- {SP, 1SPl 
6. {nc, lsp} 

7- {SP, nc, 1SPl 

Subset A of Sz * 
0.2 0.06 
0.4 0.4 
0.0 0.2 
0.8 1.0 
0.6 0.6 
0.4 0.8 
1 .o 1 .o 

(3.5) holds. Third, the function is also superadditive, (3.8). Fourth the function is 

not subadditive, (3.9) because F{nc, Zsp} 2 F{nc} + F{Zsp}. 

3.6.2 Example 2. Energy savings attributable to a residential 
weatherization program 

In this example, an imprecise probability function is constructed using a less di- 

rect assessment method, which we refer to as compatibility mapping. This method 

was first introduced by Strassen (1964) and was further developed by Dempster 

(1967). The method is applied to a problem related to calculating the lower and up- 

per expected values (using Choquet expected values) of energy savings attributable 

to a residential weatherization program. 

Compatibility mapping involves: (I) assessing a probability measure Q on a 

related set 0 of possible states of the world; and (2) relating 0 to a set R of 

outcomes which are relevant to the problem at hand. The relation between 0 and 

Sz is given by the “compatibility mapping,” 

I?: 0 + { A :  A R a n d A #  c j } ,  (3.24) 

Where r(0) is the set of all w& compatible with 8, for each element &w. 
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As is illustrated below, Q and I' induce lower and upper probabilities and e 
or R by the formulas 

- P(A)  = q - p e  : rye) 5 A})  (3.25) 

and 

In this example, let 0 = ( 0 ~ , & , & , 0 4 } ,  where each 0; pertains to a particu- 

lar pattern of household electricity use. For the purposes of this example, let 

represent households with relatively low electricity use and no daily use peaks, O2 

households with average electricity use and morning and evening peaks, 193 house- 

holds with high electricity use and morning and evening peaks, and 04 households 

with no clear electricity use patterns. Data collected as part of an extensive subme- 

tering project indicates that the proportion of households exhibiting these patterns 

is . I O ,  25, .35, and .20, for 8 1 , 6 2 , 0 3 ,  and e4, respectively. 

Assume the utility has been running a residential weatherization program for a 

number of years and that the program represents one DSM resource that is being 

considered for inclusion in the next IRP. Before a benefit /cost ratio can be calculated 

for this program, its energy savings on a per participating household basis needs to 

be estimated. Analysis of weather corrected electricity bills indicate that households 

participating in the program reduced their annual electricity use by 2500 kWh. 

The problem for the analyst is determining what percentage of this reduction 

can be attributed to the program as permanent savings. This is a problem because 

households change in various ways over time. For example, households could pur- 

chase/acquire different end-use technologies, and change preferences and behavior 

with respect to electricity use. Only a few studies have probed this problem. As- 

sume the analyst has anecdotal evidence from the field. 
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In this xample, we have chosen to structure the problem using a compatibility 

mapping. As mentioned above, we have a probability measure Q on the set 0 over 

the 4 classifications of household electricity use. We shall define the outcome set, 

$2, as also containing four members, where 0 = {w1,w2,w3, w4} and w1 = 30-70% 

of electricity savings can be attributed to the residential weatherization program, 

w2 = 60-80%, w3 = SO-SO%, and w4 = 90-100%. 

Table 3.2 represents a compatibility mapping between 0 and R, based on sparse 

studies and anecdotal evidence. A* in the table indicates that 8i is compatible with 

outcome wi. For example, 81, is compatible with w4, which indicates the program is 

significantly responsible for the savings, because it could be argued that few factors 

other than the installation of conservation measures could account fora a reduction 

in electricity use in households that use a relatively small amount of electricity to 

begin with. 

A - in the table indicates that 6; is not compatible with outcome wi. For exam- 

ple, 64 is judged incompatible with w4 because one can imagine numerous factors 

unrelated to the installation of measures that could underlie irregular patterns of 

electricity use. Thus, it seems more appropriate that 64 households are compatible 

with w1 and w2 outcomes. 

Applying (3.25) and (3.26) to the contingency table in Table 3.2 yields the lower 

and upper probabilities contained in Table 3.3. For example, I’(w1) = 0 because no 

mapping between 0 and 0 yields a subset which is equal to or is subsumed by w1. 

- P(w1w2) = .20 because the mapping between 0 4  and R yields a subset which is equal 

to ( ~ 1 ~ 2 ) .  p(w1)  = .55 because the mapping between 0 3  and 0 4  indicate a non-null 

intersection, namely w1, and P( 0,) = .35 and P( 0,) = .20, which when added equal 

.55. F(qu,> = 1.0 because (wIw2) has a non-null intersection with every set in 0. 
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Table 3.2. Compatibility mappings for residential weatherization example 

% Energy 
savings 
attributable 
to inst allat ion 
of measures 

*Compatible; - Incomplete 

(3.18) and (3.19) can be used to calculate lower and upper expected values 

for savings attributable to the weatherization program. To simplify this example, 

let’s assume that w1 = .5,wz = .7,w3 = .85, and w4 = .95. Then X1 = 1250 

kWh, X 2  = 1750 kWh, X3 = 2125 kWh and X ,  = 2375 kWh. Using (3.18), 

Ep@ - = 1250 + (1750 - 1250) * .35 + (2175 - 1750) * .10 + (2375 - 2125) * 0 = 1462.5 

kWh. Using (3.19)’ +(X) = 1250 + (1750 - 1250) * 1.0 + (2125 - 1750) * .80 + 
(2375 - 2125) * .35 = 2137.5 kWh. 

In conclusion, it should be noted that had the analyst had better information, 

the contingency table could have been completed with conditional probabilities and 

the expected value calculations could have been computed the classical way using 

(3.16). However, as the example indicates, and we argue above, uncertainties plague 

these types of problems and it is unlikely indeed that in many instances the analyst 

will have the information needed to complete these types of contingency tables. 

3.6.3 Example  3. Oil Price Forecasting 
Example 1. features the direct elicitation of upper and lower probabilities. 

Example 2 features the construction of upper and lower probabilities from an 
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Table 3.3. Upper and lower probabilities for residential weatherization example 

incomplete contingency table. This example features the construction of upper 

and lower probability cumulative distribution functions using a betting paradigm. 

The topic chosen for this example is oil price forecasting. 

Assume the utility currently possesses a supply resource base that is dependent 

upon oil. The future price of oil, then, would be of considerable importance to the 

utility. Assume that the utility has access to an “expert” on the world oil market 

and that the goal is to elicit from the expert the expected value of the price for a 

barrel of oil in the year 2000. 

In addition to the two methods for eliciting and constructing upper and lower 

probability functions discussed in the first two examples, a third method relies on 

betting behavior to  elicit subjective probabilities. Based on the work of Ramsey 

(1931), De Finetti (1964), and others, the approach assumes that people make bets 

or accept bets involving loses and gains according to personal assessments of the 

likelihood of the events associated with the loses and gains. For example, according 

to De Finetti (1964), a person would be indifferent in making or taking a bet when 

the gain (or loss) a person would certainly receive (S) is equal to the gain (or loss) 
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a person would expect to receive (SI) contingent upon the event of the bet coming 

true. The subjective probability of the event would be P ( E )  = S/S1. 

The betting method will yield a classical probability function in those instances 

where there is one probability where the person is indifferent between making or 

taking a bet. However, as observed by Walley (1991), in real life, people rarely 

would make the same bet that they would take, or take the same bet that they 

would make. In other words, from the betting perspective, a person would want to 

receive more for winning the bet than the person would want to pay out for losing 

the bet. We attribute this observation to the fact that people intuitively fashion 

upper and lower probabilities about the world because the real world is so uncertain. 

Thus, we argue, the betting paradigm should be generalized for application to 

uncertain real life situations such as IRP. With respect to oil price forecasting, the 

following could be pursued. 

Assume the goal is to elicit from the expert upper and lower cumulative distri- 

bution function (LCDF) of the price of a barrel of oil in the year 2000. The LCDF 

could be elicited by assigning the expert to assume the position of a bettor (as op- 

posed to bookie) and posing the following general question: What is the minimum 

payout (Y), you would expect for making a bet that the oil price in the year 2000 

would be greater than or equal to X given that winning the bet would incur a sure 

gain of $1,000,000 (or some such amount)? The question can be posed for numerous 

values for a barrel of oil to create, more or less, an LCDF, as shown in Fig. 3.1, 

using the formula, p(Y)  = $1,000, O O O / Y .  

Similarly, the upper cumulating distribution function (UCDF) can be elicited by 

posing the following general question for numerous oil prices: What is the maximum 

payout, (Z), you would provide for taking a bet that the oil price in the year 2000 

would be greater than or equal to X given that losing the bet would incur a sure loss 
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Fig. 3.1. Upper and lower cumulative distribution functions for the 
price of oil in the year 2000. 

of $1,000,000 (or some such amount)? An UCDF is shown in Figure 3.1, calculated 

using the formula p ( X )  = $1,000, OOO/Z.  Formulas found in Section 3.5 can be 

used to calculate the expected values of the LCDF and UCDF. 

We need to conclude the discussion of this example on a cautionary note. Exam- 

ples 1-3 were purposely designed to illustrate different approaches to constructing 

upper and lower probability functions. In examples 1 and 3, it is assumed that 

experts could be interviewed to supply the probabilities. Likewise, in Example 2, it 

was assumed that an expert could be interviewed to supply compatibility judgments. 

The examples do not indicate, unfortunately, the very real problems associated with 
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working with human experts to  elicit/construct these types of estimates of judg- 

ments in a reliable and valid fashion. 

3.6.4 Example 4. Choosing resource supply options 

An important goal of IRP is choosing resource supply options to meet fore- 

Lists of supply options typically include new power casted electricity demand. 

plants, repowering of existing plants, and demand-side management programs. The 

challenge is deciding which combination of options to choose to meet the forecasted 

requirements . 

The most basic approach is to rank order the options according to some cri- 

terion or criteria and then select as many options as needed to meet the forecast 

requirements. For example, in the 1991 Northwest Conservation and Electric Power 

Plan, the options are rank ordered by levelized nominal cost and levelized real cost. 

In the 1991 Niagara Mohawk Integrated Electric Resource Plan, options are rank 

ordered according to benefit/cost ratios. 

The god of this example is to illustrate how upper and lower expected values can 

be used to choose resource supply options. Table 3.4 presents hypothetical data on 

thirteen resource options.’ The Table includes, from left to right, lower expected 

benefits (in present value), upper expected benefits, lower expected costs, upper 

expected costs, lower expected resources supplied in MW, upper expected resources 

supplied, a benefit/cost ratio defined as columns A/D, and a benefit/cost ratio 

defined as columns B/C. The expected values are assumed to have been constructed 

using methods such as those discussed in examples 1-3. 

The options and data are conceptually based upon real analyses contained in 
the 1991 Niagara Mohawk Integrated Electric Resource Plan. We stress, however, 
that the values in Table 3.4 are purely hypothetical. 



Table 3.4. Summary data on example resource options * 

Option description 
1. New combined 

cvcle unit 

A B C D E F G 

- E ( B )  E(B) E(C) E(C) E ( M W )  E(MW) A/D 

550 610 520 600 220 240 0.92 

12 2. New simple cycle 
gas turbine 

3. repowering using 
existing turbines 

15 18 20 20 25 0.60 

1 950 1 1000 1 1200 I 1350 1 900 1 940 10.70 

1200 4. New combined 
cycle power plant 1300 1000 1240 920 940 0.97 

20 

2300 

100 

5. Life extension 
of plant Y 

6. 800MW phased 
IGCC at plant Z 

7. Life extension 
of plant A 

35 200 300 320 430 0.07 

2400 1800 2260 790 810 1.02 

140 200 300 150 200 0.33 

8. TWO new 300MW 
pulverized coal 

2000 9. New 600MW 
IGCC 

1 1700 I 1940 1 1800 1 2110 1 630 

2100 1800 1900 590 610 1.05 

650 

20 11. C&I audit 
program 

0.81 

40 10 20 30 60 1.0 

6 13. Heat pump water 
heater program 

10. New 25MW nat- 
ural gas fuel cell 

8 6 8 5 10 0.75 

I 115 I 120 1 105 I 115 1 25 I 25 1 1.0 

12. Residential 
weatherization 1 30 1 40 I 15 1 30 I 50 75 1.0 

H 

B/C 
1.17 

0.83 

0.83 

1.3 

0.18 

1.33 

0.70 

1.08 

1.17 

1.14 

4.0 

2.67 

1.33 

*A - F are in millions of dollars 

There are numerous ways to choose resource supply options from the thirteen 

presented in Table 3.4. Let’s assume that the lower expected resource need is 3000 

MW and that the upper expected resource need is 3500 MW. The most conservative 

approach would be to: (1) use the most risk averse benefit/cost ratio, which is the 

one in Column G, which is calculated by dividing the lower expected benefits by the 

upper expected costs; (2) rank order the options using this ratio; and (3) choosing 

options such that the sum of the lower expected resources supplied just exceeds the 
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upper expected resource need. If this approach were chosen, the following options 

would be chosen -9, 6, 10, 11, 12, 4, 1, 8, 13, and 3. The lower expected resource 

supply would be 4,160 MW. 

To balance this conservative approach, the most optimistic approach could also 

be explored, which would be to use the benefit/cost ratio in Column H and choose 

options to  just exceed the lower expected resource need. If this approach were 

chosen, the following option would be chosen-11, 12, 13, 6, 4, 9, 1, 10, and 8. The 

upper expected resource supply would be 3420. 

An interesting observation in this example is that the two approaches yield a 

nearly identical set of options. The only difference is that option 3 is left out of 

the optimistic approach. Basically, then, the utility is left with the decision about 

whether or not to additionally pursue option 3, or substitute option 3 with a smaller, 

but less financially attractive resource, such as option 2. 
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4. MANIPULATING UNCERTAIN 
QUANTITATIVE ESTIMATES 

Section 3 addresses only one aspect of representing uncertainty about quanti- 

tative estimates; namely, the elicitation/construction of individual upper and lower 

probability functions. This section addresses what to do if one has two or more 

functions that could be usefully synthesized in some fashion to provide insights into 

a problem or question. As it happens, there are numerous quantitative methods 

available to  synthesize uncertainty functions. To provide some guidance about what 

methods to  use, Section 4.1 sets out a theoretical but practical framework within 

which to understand relationships between pieces of evidence to be brought to bear 

on a problem. 

Four general methods for synthesizing evidence are encompassed within the 

framework: consensus, combination, updating conditionalization, and diagnostic 

conditionalization. Mathematical definitions for these methods and illustrations 

are presented in Sections 4.2 to 4.5 respectively. 

4.1 SCHEMA FOR EVIDENTIAL REASONING 
Evidential reasoning is defined here to represent the process of assembling and 

synthesizing pieces of evidence to be brought to bear on a problem. For our pur- 

poses, it is assumed that a piece of evidence will take the form of an imprecise 

probability function over an outcome set S I .  The schema for evidential reasoning 

presented in this section addresses different relationships between pieces of evidence 

and why different mathematical methods are needed to synthesize evidence given 

different relationships. 

To begin this discussion, it is important to make the distinction between diagno- 

sis and decisionmaking, because only the former is related to evidential reasoning. 

Diagnosis is concerned with ascertaining the state of the world, past, present, or 
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future. Decisionmaking is concerned with shaping the future state of the world 

given relevant diagnosis. 

The diagnosis-decisionmaking distinction is common in numerous areas of hu- 

man endeavor. A physician renders a diagnosis about what malady affects a patient 

and then, based on the diagnosis, decides what treatment to  administer. In our le- 

gal system, the first step is to determine the innocence or guilt of the defendant 

(a diagnosis). Based on the determination, a decision is made on the appropriate 

punishment. Even economists follow this model when their macroeconomic recom- 

mendations are based on whether the economy is determined to be in recession or 

not. 

This model is very applicable to the IRP context. Basically, diagnosis pertains 

to the establishment of inputs for use in the resource option decisionmaking process. 

Some of these inputs represent the past (e.g., effectiveness of a DSM program) and 

some represent the present (e.g., current total plant capacity). What makes IRP 

particularly challenging is the preponderance of future diagnoses (e.g., electricity 

demand, oil prices, environmental regulations). Thus, IRP entails identifying the 

required inputs to the decisionmaking process, specifying the inputs quantatively, 

representing uncertainty about inputs using imprecise probabilities, and applying 

an appropriate decision heuristic. 

Fig 4.1 is provided to help explain the diagnostic process and the associated 

schema for evidential reasoning. Let7s focus on the top half of the figure and work 

our way from left to right. 

Because the real world is so complex, humans tend to simplify things by reducing 

the real world into a collection of interrelated systems, such as the oil market, 

the utility service area, a power plant, and a transmission system. Typically, a 

diagnosis is related to the state of one such system, past, present, or future. Also, 
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the systems themselves are still complicated, such that several descriptors of the 

system are needed to render a diagnosis about the system. Thus, as indicated in 

Figure 4.1, multiple data channels describing the system may need to  be tapped to 

form multiple pieces of evidence about the system. 

0 
0 

4r$b 

0 

O0 

Statistical 
database Evidence 

i 
0 

1 DiagnOSiSA 
wer / Evidence 

0 i A 

Diagnosis* 
0 

0 Evidence 
k wer 

/ A 
0 

0 

_ _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - -  
Knowledge base B 

X 

\ 
\ 
\ 

Evidence 
\ . 

\ DiagnOSiSB 
Over 
A \ 

\ 
\ 

\ d Evidence 

New constraint 

Fig. 4.1. Schema for evidential reasoning. 

For example, assume that the utility service area can be considered as an elec- 

tricity demand system and we want to diagnosis the area as increasing, decreasing, 

or remaining stable with respect to electricity demand. To determine the current 

status of the system, data could be collected from various parts of the system (e.g., 

by sector). To determine changes in the system, data should be collected over time. 

A combination method of some sort is needed to synthesize the data to render a 
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diagnosis about the system [e.g., is it growing, shrinking; See Section (4.3.1) for an 

example of combination]. 

In our exposition, we assume that the current real world will first be consulted 

before rendering a diagnosis. Sometimes, though, a statistical database will exist 

that contains a history of past diagnosis. This database could be extremely valuable 

in situations where the evidence from the real world is deficient in some way. The 

general process of using a statistical database to improve a diagnosis based on 

current evidence is called diagnostic conditionalization [See Section (4.5.1) for an 

example]. After diagnostic conditionalization, a second diagnosis is rendered. 

Notice that diagnosis A is linked to  knowledge base A. This means that an 

identifiable base of expertise or methodology was used to: conceptualize the real 

world; build pieces of evidence; render a diagnosis; and generally manage the entire 

diagnostic process. Consensus methods are used to synthesize diagnosis rendered 

from different knowledge bases about the same outcome set R [See Section (4.2.1) 

for an example]. Thus, the right side of Figure 4.1 illustrates consensus between the 

diagnosis rendered by knowledge bases A and B, respectively, over R. One can think 

of separate knowledge bases as being different experts or models or paradigms, etc. 

Sometimes information will become available which places a firm constraint on 

where the truth lies in s1. In other words, it is determined that some member(s) 

of R cannot be true. Synthesizing this constraint into a current diagnosis is simply 

known as updating [See Section (4.4.1) for example]. Similar to diagnostic condi- 

tionalization, a new diagnosis, s1* , is rendered, after updating. 

Thus, we have four methods for manipulating imprecise probability functions: 

consensus, combination, updating, and diagnostic conditionalization. Not all are 

necessarily used to solve all problems. They can be used in various combinations, 

according to  an evidential reasoning design. The following four sections say more 
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about each method, about what is known about how to actually implement each 

method, and present examples. 

4.2 CONSENSUS 
Consensus is probably the best known and researched of the four methods. We 

sometimes refer to it as a whole evidence scheme because each imprecise probability 

being synthesized represents an entire diagnosis about a state of the world. Each 

can stand on its own. 

Suppose that N knowledge bases were used to appraise where the truth lies in s1, 

resulting in N lower probability functions, PI, p2 . . .EN ,  over R. An appropriate 

way to construct a single lower probability, E*, from El, &, . . . l’N is to form a 

weighted arithmetic mean 

4.1 

where A C R for all subsets of fi and wi are weights that are nonnegative and sum to 

one. Consensus methods for imprecise probabilities has been explored axiomatically 

by Wagner (1989). 

4.2.1 Example 5: Consensus of economic growth 
Suppose three eminent economists are polled concerning their predictions of 

economic growth in the utility’s service area. Let s1= { high growth (hg), medium 

growth (mg), recession (r) }. Let’s also assume that the three experts provided 

lower probability functions over R that satisfy the conditions set forth in Section 

3.3, as shown in Table 4.1. Using Table 4.1, assuming equal weights of .33, the 

consensus opinion of the three experts is found in the fourth row of the table. Table 

3.7 can be used to calculate upper probabilities, if desired. 

4.3 COMBINATION 
Combination is probably the most used of the four methods, if one considers 

that people implicitly if not unconsciously use combination rules to synthesize pieces 
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Table 4.1. Consensus of lower probabilities * 

*hg-High growth; mg-Medium growth; r-Recession 

of evidence in many endeavors, from the professions (e.g., medicine and law) to 

everyday life (e.g., What will traffic be like today?, What mood is the boss in?). 

Unfortunately, developing explicit met hods to combine imprecise probabilities as 

proven illusive and represents a definite asea for future research. 

The term “combination” was coined by Shafer (1976). He uses the term in the 

similar manner as we do. Specifically, combination can be seen as a partial evidence 

scheme, where each piece of evidence has equal standing with respect to each other 

but each alone is only partially definitive. In a paxtial evidence scheme, one piece 

of evidence can support a diagnosis that another piece of evidence doesn’t support. 

The challenge of a partial evidence scheme is to develop pieces of evidence which 

are comprehensive in scope, and have minimum overlap and repetition. 

The key assumption about a combination rule, then, is that the pieces of evi- 

dence describe different aspects of the same phenomenon, as shown in Figure 4.1. In 

the mathematical and statistical sense, the pieces of evidence are not independent, 

because they flow from the same source, albeit in different ways. Unfortunately, 

Shafer’s combinat ion rule has proven controversial in application to dependent 

pieces of evidence. Indeed, we have found it to be inapplicable in cases when pieces 

of evidence are completely contradictory, and thus cannot recommend it for uses in 

IRP. 
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Thus, at the present time, we are left without a combination rule that we can 

recommend without hesitation. On the other hand, we have made some progress 

on a combination rule, which is summarized in Appendix A. This rule is used in 

the following example. 

4.3.1 Example 6. The large industrial customer 

The industrial demand for electricity in the utility service area is dominated 

by one very large customer, Acme Aluminum Company. This company has been a 

customer for over 50 years. Unfortunately, times have changed and the utility cannot 

count on Acme’s business in the future. Through discussions with the company, it 

is now known that within the year, Acme will choose among these four options, 0 = 

shutdown the plant (sd), continue to buy power from your utility (sq)-for status 

quo, buying power from an adjacent utility (bp), build its own cogeneration facility 

( C d -  

Because Acme is such an important customer, its decision will significantly affect 

IRP for the utility. The question is how to get a handle on what Acme may do. 

Over the past several weeks, four pieces of evidence have surfaced which provide 

clues concerning Acme’s decision. 

Evidence 1. (El). The chairman of Worldwide Aluminum International, the 

parent company of Acme Aluminum Company, has publically stated that one of its 

four North American plants will need to be shut down due to a general downturn 

in the demand for aluminum. Acme is the oldest of the four plants but enjoys 

transportation and labor cost advantages over its competitors. 

Evidence 2. (E2) The neighboring utility with whom Acme is said to be negoti- 

ating a power purchase contract has little excess capacity. It appears that it would 

have to purchase power from other utilities to meet its commitments. It is unlikely 

that Acme could get a better rate by switching suppliers. 
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Evidence 3. ( 3 3 )  The Acme site appears uncondusive for a large co-generation 

facility. The site has little free space and a lack of water. However, newer technolo- 

gies might be able to overcome these constraints. 

Evidence 4. (E*) The utility has never interrupted power to Acme over the past 

50 years. Negotiations over rates and scheduling have always gone smoothly. Acme 

has never complained about the service. 

It is decided to use the pieces of evidence to construct a lower probability func- 

tion over a. The first step is to create/construct/elicit lower probability functions 

for each piece of evidence, using methods such as those suggested in Section 3. 

Table 4.2 presents ps for each piece of evidence that, hypothetically, could have 

resulted from such an exercise. Basically, E1 supports {sd} and none of the other 

options. 3 2  weakly supports {bp} but is seen to more strongly force the utility to 

favor any of the other options {sd, sq, cg}. E3 is written such that {cg) cannot be 

totally dismissed. However, the poor site would lend support for (sd}, and some 

support for the utility purchase options {sq, bp}. E4 heavily favors {sq} and also 

the two utility options together {sq, bp}. 

Using the methodology presented in Appendix A, the combination of these four 

pieces of evidence indicates that the most likely options are shutdown and status 

quo and the least likely is buying power from the neighboring utility [See E* and 

f’* in Table (4.2)]. 

4.4 UPDATING 

Updating is very useful in situations where new evidence comes to light that 

provides insight on which members of $2 cannot be true for a particular diagnosis 

and where it is impractical or illogical to reformulate existing pieces of evidence to 

a constrained Q. Because the new piece of evidence cannot stand on its own and 
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Table 4.2. for the large industrial customer examples * 

sd bp cg 0.5 0.1 0.6 0.1 0.32 0.87 
sq bP cg 0 0.1 0.6 0.8 0.49 0.83 
R 1.0 1 .o 1.0 1.0 1.0 1 .o 

*sd-shut down; sq-status quo; bp- buy power; cg-cogeneration 

says nothing about the remaining options in R, we sometimes call the new evidence 

supplement a1 evidence. 

Generally, suppose that and P are a pair of lower and upper probability 

measures on R. The probability measures P compatible with and are, we 

recall, just those P E P(.P,P) = { P  : P ( A )  5 P(A)  5 F(A)  for all events A}. 

Now if some probability measure P is our model of “how uncertainties 1ie”in R and 

we are apprised of additional information which renders it certain that “the truth 

lies in E,” for some subset E R with P ( E )  > 0, it is customary to revise P 

by “conditionalization”(i.e., updating) t o  a new probability measure P ( - ( E ) ,  where 

P(A1E) = P(A  n E ) / P ( E )  for all events A. 
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If, instead, we have P delineated only by 2 and 7, and we discover that E is 

certain, we have the problem of updating 

way to do this would be by the formulas 

and P (assume P(E) > 0). A natural 

- P(A1E) = rnin(P(A1E) : P E P ( P , F ) )  4.2 

and 
- 
P(A(E)  = muz(P(A1E) : P E P(p,F)} .  4.3 

That is, P(-IE) and P(-IE) are just the lower and upper envelopes of the family 

of all conditionalized probability measures P( . (E)  as P runs through the set of 

all probability measures compatible with 2 and F.  As one would expect, it is in 

many cases impossible to compute .P(A(E) and F(AIE) exactly. The difficulty is 

the very one encountered with respect to z ( X )  and z ( X )  in Section 3.5. In fact, 

the situation here is completely analogous to that of Section 3.5, for here we can 

find conservative approximations to .P(AJE) and F(AIE) that are exact when 

two-monot one. 

is 

The approximations are easily derived. 

P(A  n E )  + P ( x  n E )  for every event A, one has 

Let P E P(f',p). Since P(E)  = 

P ( A  n E )  - P ( A  n E )  P ( A ) E )  = 
P ( A n E ) + P ( Z n E )  ' g ( A n E ) + P ( & - m )  

P ( A  n E )  +F(% E )  1 
- P ( A  n E )  

- 

(4.4) 

where the first inequality holds because for fked c > 0, x/x + c is an increasing 

function of x for x > 0, and the second inequality holds because P ( x  n E )  is 

replaced by the value P( A n E )  2 P(sf n E) .  Similarly, one can show that 
-- 

From (4.2) - (4.5), it follows that 
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Moreover, if and satisfy, in addition to the defining properties (3.4) - (3.6), 

the complementarity property (3.7), and if e is two-monotone (3.23), then the 

first and third inequalities in (4.6) are actually equalities. And in such a case, 

- P(AIE) + P(AIE) = 1, and P ( - [ E )  remains two-monotone (Sundberg and Wagner, 

199213). 

-- 

4.4.1 Example 7. No shutdown of Acme Aluminum 

Today the chairman of Worldwide Aluminum International announced that 

Acme Aluminum Company will remain open for business. However, nothing else 

new is known about Acme's decision on whether to continue doing business with 

the utility. 'It is decided to update p*,P* [see Table (4.2) in Example 61 with the 

knowledge that SD is no longer in consideration. 

To accomplish this, (4.6) is applied to E* in Table 4.2. The results are in 

Table 4.3. As can be seen, p*(sd) and P*(sd) are now both 0.0. Also, E* (sq, 

bp, cg) and p*(sq, bp, cg) both equal to  1.0, indicating that the truth will lie in 

the subset that contains the remaining options. Overall, the weight of evidence has 

shifted to the status quo and co-generation options, with the former carrying the 

most weight. 

4.5 DIAGNOSTIC CONDITIONALIZATION 

As mentioned in Section 4.1, diagnostic conditionalization relates to  a situa- 

tion where one has past statistical data that could be used to improve a diagnosis 

rendered using data directly taken from the system under study. Like updating, di- 

agnostic conditionalization is a supplemental evidence design because, in almost all 

circumstances, the past statistical data could not stand alone to support a diagnosis. 

Similar to the combination rule case, methods for diagnostic conditionalization have 

not been developed for the most general cases. However, we can propose a formula 

to condition a special kind of imprecise probability, known as a belief function, with 
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Table 4.3. Updating after the no-shutdown decision * 

~~ 

A - P* F* 
sd 0 0 
sq 0.18 0.85 
bP 0.01 0.52 
cg 0.14 0.57 
sd sq 0.18 0.85 
sd bp 0.01 0.52 

*sd-shut down; 
bp-buy power; cg-cogeneration 

sq-st at us quo; 

past statistical data that can be represented as a classical probability function over 

the frequency of outcomes in SZ. 

To begin, in addition to meeting conditions set out in Equations (3.4, 3.5, 3.7 

- 3.9, and 3-23), a lower probability that is also a belief function must meet the 

additional condition: 

ie I 

This condition is set out and explained in detail by Shafer (1976). The condition 

is often referred to  as r-monotonicity, which is obviously more constrained than 

monotonicity, (3.5) and 2-monotonicity (3.23), respectively. 
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As is often required in mathematical reasoning, it is often convenient to trans- 

form a formula to find representations that are easier to work with. For example, 

a transformation was used to explain the derivation of Choquet expected values in 

Section 3.5. With respect to belief functions, it is useful to transform them using 

the Mobius Transform: 

&?(A) = (-l)'A-El.P(E). ( 4 4  
EGA 

Shafer (1976) refers to the M(A) values as basic probability assignments, where 

M ( 0 )  = 0, and x M ( A )  = 1.0 for all A 5 $2. For completeness, a belief function 

can be induced from a basic probability assignment by: 

- P(A)  = &?(E). (4.9) 

Assume a lower probability function, .P, meeting the conditions for representing 

a belief function has been developed over 0, and has been transformed to M ( E )  

using (4.8). Also assume, a statistical database is available from which a probability 

function, P H ,  over R can be established. Then for each member, A, in R) 

conditioned by PH by the following: 

can be 

P ( A )  = M ( E ) P H ( A / E ) .  (4.10) 
E@ 

(4.10) has several interesting properties. First, it yields a classical probability 

function over 0, not an imprecise probability. Second, the formula reduces to the 

farnous formula known as Jeffrey Conditionalization, due to Jeffrey (1983), when 

the subsets of R that have positive M values are pairwise disjoint. Wagner and 

Tonn (1990) and Sundberg and Wagner (1992b) explore (4.10) in additional depth. 

As mentioned above, (4.10) needs to be generalized to handle a broader range of 

imprecise probability functions, specifically imprecise past statistical probabilities, 

and imprecise probabilities as outcomes. 
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4.5.1 Example 8. The Hazardous Waste Site 

Suppose that the utility is involved in some fashion with an abandoned haz- 

ardous waste site (e.g., as a potentially responsible party [PRP] under Superfund). 

To develop rough cost estimates for remediating the site, the amount and propor- 

tion of hazardous wastes at the site must be known. From fragmentary records, 

it can be determined that the dump contains three types of hazardous wastes, 

0 = {Tl,T2,T3}. It is also known that the site received at least three kinds of 

shipments, SI,&, and 5'3,  that accounted for 10%) 20%) and 50% of the mass of 

hazardous waste at the site. It is known that S1 and 5'2 contained no hazardous 

wastes of type Tl ,  and S3 contains no wastes of type 2''. Nothing is known about 

the remaining 20% of the shipments, referred to as &. 

This information can be used to create a lower probability function, .P, over the 

proportion of mass of each type of hazardous waste at the site (see the first column 

in Table 4.4). Using (4.8), the Mobius Transform of can be calculated (see the 

second column in Table 4.4). 

Suppose a database maintained by the Regional Planning Agency indicates 

that factories in the area are known to have produced wastes in 0, according to 

the following proportion, PH(T1) = 0.4, PH(T2) = 0.3, and PH(T3) = 0.3. Using 

(4.10), we can condition M(R) by P H ( Q )  to yield P ( R )  (see the fourth column of 

Table 4.4). For example, P(T1) is calculated as follows: 

(4.11) 

= .37 0.4 
0.4 + 0.3 + 0.3 + 0.2 

0.4 
0.4 + 0.3 
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Table 4.4. Hazardous waste dump * 

Tl 0 0 0.4 0.37 
T? 0 0 0.3 0.42 

I T? I 0 I 0 I 0.3 I 0.21 I 
Tl 7 T2 0.5 0.5 
T1,T3 0 

4.6 SUMMARY REMARKS ON EVIDENTIAL REASONING 
This section introduces a schema for evidential reasoning that encompasses four 

met hods for synthesizing imprecise probabilities: consensus, combination, updating, 

and diagnostic conditionalization. In some cases, such as consensus, the methods 

have been well explored. In others, the methods need additional development (e.g., 

combination). In general, we hope this section serves well the purpose of presenting 

a paradigm of handling uncertainty that relies on constructing imprecise proba- 

bilities over important outcome sets given what is known about the problem at 

hand. 

In some sense, Figure 4.1 and the examples present an idealization of what it 

takes to  develop “designs” to synthesize pieces of evidence. In practice, analysts 

will face numerous situations where the information at hand does not conform to 

our schema or exactly track the examples. We can think of several examples where 

this might be true. For instance, the problem of synthesizing two imprecise proba- 

bilities specified over two different outcome sets, R and R*, to create one imprecise 

probability over the Cartesian product of R and R* is not addressed. It turns out 

that this is a difficult problem even within the classical probability framework and 

future reasoning should address the more general imprecise probability case. 
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We have also not explicitly addressed issues surrounding the use of Bayes Theo- 

rem, for updating prior uncertainties given new but not conclusive evidence, which is 

often in the form of new statistical evidence. This approach to evidential reasoning 

has application to IRP but its proper use, in our minds, is still under consideration. 

Also, generalizing Bayesion updating using classical probabilities to use imprecise 

probabilities is yet another open research question. Walley (1991) does address this 

problem and his treatment deserves consideration in future research. 

In summary, though, the ideas and methods contained in this section are more 

than sufficient to assist utilities in using imprecise probabilities to solve real world 

problems. Future research should focus on improving and extending the tool kit 

of methods available to utilities. The next section addresses yet another aspect of 

handling uncertainty, that of decision trees. 
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5. IMPRECISE PROBABILITIES 
AND DECISION TREES 

This section addresses the topic of using imprecise probabilities to accumulate 

expected values at the end points of decision trees. We are using the term “decision 

trees” in a general sense to represent relationships between random variables and/or 

decisions that can be represented as a directed graph composed of one root node, 

and an arbitrary number of variables and end nodes. Figure 5.1 presents the decision 

Energy 
Demand 

tree used in Example 9, discussed below, for consideration. annual 
coal price increase 
(%, 1981 $) 

Load 

Fig. 5.1. \ Decision tree for production cost example. 

production 
costs (1981 $M) 

890.7 

970.5 

1150.2 

888.2 

967.8 

1146.9 

885.6 

965.0 

1143.6 

1203.8 

1312.7 

1557.7 

11992 

1307.7 

1551.7 

1194.4 

1302.4 

1545.4 

1688.9 

1845.5 

2197.9 

1416.8 

1545.5 

1834.9 

1412.0 

1540.2 

1828.6 
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The challenge arising from decision trees is how to handle probabilistic rela- 

tionships among the variables in a decision tree. This is an important problem to 

address because decision trees have many applications in IRP. For instance, Exam- 

ple 9 considers the case where three random variables-energy demand, load factor, 

and coal price increases-are input into a costing model. The goal is to calculate 

expected values for the costs at the 27 end nodes in Figure 5.1. 

Numerous resource problems can be “designed” as decision trees. For example, 

deciding whether to run, repower, or shut down a power plant can be constructed 

within the decision tree methodology. Additional examples include: strategic deci- 

sionmaking, DSM program implementation, and environmental compliance. 

Breaking from the pattern established in Sections 3 and 4, in this section the 

discussion of the general methodology proposed to propagate imprecise probability 

through a decision tree is intertwined with the example. This approach was chosen 

because the example is based on previous research by Thorp, McClure, and Fine 

(1982) that uses imprecise probabilities in a utility context. In this study, imprecise 

probabilities were used to calculate expected vdues of production costs for a utility. 

To contrast our method with theirs, their method and results are presented first, 

followed by our method and results. The entire discussion is made possible because 

the authors of the first study kindly made available their original data. 

As a final word, the method proposed herein, [see (5.2)], is based on nonlinear 

optimization of an expected value calculation. Basically, the goal is to  search for 

those combinations of upper and lower probabilities within upper and lower bounds 

on the random variables that produce maximum .and minimum expected values 

of the outcome variable under consideration. The approach presented below to 

accomplish this can be considered a novel result of this research project. 
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5.0.1 Example 9. FORECASTING PRODUCTION COSTS FOR AN 
ELECTRIC UTILITY 

In a study of Thorp, McClure, and Fine (1982), which is the basis for Example 9, 

the 1990 production cost, C,  of an actual, but unidentified, electric utility depends 

on the values of the uncertain quantities (;.e., random variables) E = energy demand 

(GWH), F = load factor, and R = average year to year coal price increase from 

1981 to 1990 (%). Given specific values E = e, F = f, and R = T of these random 

variables, a standard production costing algorithm can be used to calculate the 

corresponding production cost C = C(e, f ,  r ) .  

In this study, the possible values of E ,  F ,  and R are given, respectively, by the 

sets RE = { 50,000 GWH, 60,000 GWH, 70,000 GWH}, OF = (0.635, 0.675, 0.725) 

and RR = { 1%,2%, 4%}. To complete the construction of the conceptual apparatus 

of Section 3.5, the 27-element set is defined by 

R = f l ~  x RF x OR := { ( e , f , r )  : e E RE, f E RF, and r E RR). 

The 1990 production cost is then a random variable C : R + [0, 00). 

Figure 5.1 presents a decision tree which graphically depicts this information. 

The cost values at the end-nodes were produced by a costing algorithm using values 

of the three random variables as inputs. To facilitate the calculation of Choquet 

expected values, the values of C are calculated for each of the 27 triples (e, f, r )  E R 

and arranged in increasing order, c1 < c2 < . . . < ~ 2 7 .  Then, for each i = 1,. . . , 27, 

the triples comprising each of the 27 events 

Ai := “C 2 ci)’ = { ( e , f , g )  E R :  C(e , f , g )  2 c ; }  

are identified. 

At this point, upper and lower probabilities .P(Ai) and F(A;) are as- 

sessed for A I , .  . . ,A27 (never mind how, for the moment; but note that 
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St = A1 2 A2 2 . . . 2 A27, so that 1 = P(A1) 2 P(A2) 2 . . . 1 F'(A27) and 

1 = P(A1) 2 F(A2) 2 ... L F(A27)). Then the Choquet expected values of C 

with respect to e and p are calculated by formulas (3.18) and (3.19), yielding in 

this case 

and 

= $1.438 B. 

It follows from (3.22) that 

$1.159 B 5 g(C) 5 E(C) 5 $1.438 B ,  

where the crucial quantities of interest, Z(C) and z(C), are defined by 

- &(C) = min{€p(C) : P E P(Z ,F)}  

and 
- 
&(C) = maa:{&p(C) : P E P(E,F) } .  

(5 .5)  

(5-7) 

As a consequence of the way in which and p are assessed in this particular 

problem, one can actually place upper bounds on the approximation errors g(C) - 
$1.159 B and $1.438 B -z(C). We shall discuss this issue shortly. At this juncture, 

however, we need to consider a more basic question: If one i s  inteTested in t h e  

numbers  E(C) and z(C), why not  caZcuZate t h e m ,  instead of approximating t h e m  

b y  &e(C) and &?-(C)? After all, (5.6) and (5.7) amount to optimizing a linear 

function with merely 27 variables over the closed, convex polyhedral set P(p,F) .  
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The problem, however, is that P(.P, P )  is defined by the 227 - 2 pairs of inequalities 

- P(A)  5 P(A)  5 P(A),  one pair for each nonempty subset A of the 27-element set 

R! Assessing all of the quantities P(A) and F ( A )  involved in these bounds is out 

of the question. 

In order to set the stage for the discussion in the next section, and also be- 

cause it is of interest in its own right, we now describe the method by which 

Thorp, McClure, and Fine assessed the required values of and F.  What 

they did was to convene a panel of six experts from the planning department of 

the company. Each of the experts assessed probabilities over the separate sets 

RE = { 50,000; 60,000; 70, 000} ,  RF = (0.635, 0.675, 0.725)) and RR = { 1,2,4}. 

Assuming independence, probabilities were multiplied to yield probability measures 

PI,.. . , P6 on R = RE x f t ~  x OR. 

The lower and upper probability measures on R were then constructed as the 

so-called lower and upper envelopes of t h e  f a m i l y  {PI , . .  . , P6), namely 

- 
P(A)  = mas{PI(A), . . . PG(A)) .  

for each A 5 $2. Note that while (5.8) prescribes a method for calculating P(A) 

and F(A)  for any of the 227 subsets A 2 R, this method is only implemented for 

A = A I , .  . . , A27.  One can show that the upper and lower envelopes of any set of 

probability measures always comprise a pair of lower and upper probability measures 

[;.e., satisfy (3.4)-(3.7)] that satisfy the additional desirable properties (3.7)-(3.9). 

But now that the prescription (5.8) is displayed, another question arises: W o u l d  

one  n o t  get adequate bounds o n  the ezpected production cost by  s imply  calculating 

i'& := maz(€p,(C),  . . . , E p 6 ( C ) }  
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Thorp, McClure, and Fine argue that the interval [mc,Mc] is unjustifiably nar- 

row, even though it includes not only the values €pl(C), ... ,€p,(C), but the in- 

finitely many values Ip(C) ,  where P belongs to the convez hull ofP1,.  . . P6, denoted 

%(PI,  . . . , P6), and defined by 

whereXl,. . . ) is a sequence of 

nonnegative real numbers summing to one}. (5.10) 

Their reason is that, given the opinions P I )  . . . ) p6, the set of probability mea- 

sures P that are “compatible” with these opinions extends beyond Z(P1,. . . ) p6), 

the family of weighted arithmetic averages of the six opinions, to the larger family 

P(.P,F) of all probability measures between the upper and lower envelopes and 

P of the six opinions. We have, in short, 
- 

with strict inequalities the usual state of &airs. 

Note that the quantities mC and M c  do have one important use. In virtue of 

(5.11)) the numbers rnc - €p(C)  - and EF(C) - M c  provide upper bounds on the 

respective errors g(C) - €p(C) - and +(C) - z(C) that one makes by employing 

€p(C)  - as a conservative estimate for E(C) and €F(C) as a conservative estimate for 

€(C). In the study of Thorp, McClure, and Fine, mc = $1.164 B and M c  = $1.420, 

and so it must be the case that € p ( C )  - = $1.159 B errs as an approximation to E(C) 

by at most $5M and €F(C) = $1.438 B errs an approximation to &’(C) by at most 

$18M. 

- 

In the next section we explore an entirely different approach to bounding ex- 

pected production cost) based on nonlinear optimization. 

60 



5.1 BOUNDING EXPECTED COST BY NONLINEAR 
OPTIMIZATION 
Let and be a pair of lower and upper probability measures on Q, and let 

X be a random variable on Q. If it is clear, as it sometimes is, that the probability 

measures P compatible with the evidence are precisely those P E P(p ,F) ,  then 

the numbers g ( X )  = min{€p(X) : P E P(p ,F)}  and E ( X )  = max(CEp(X) : 

P E P ( f , F ) }  are obviously the appropriate bounds on the expected value of X. 

As noted in the preceding two sections, we often need to content ourselves with 

estimates of &(X) and z(X). 

The set of probability measures P(p,p) plays a crucial role in the above ap- 

proach. If this set somehow failed to capture all of the probability measures on $2 

compatible with the evidence, then no interest would attach to the numbers E ( X )  

and z(X). In what follows, we argue that the set P(P,F)  employed by Thorp, 

McClure, and Fine in the study described in the previous section fails to capture 

the set of probability measures compatible with the evidence. 

We would have no quarrel with their approach if the experts had each di- 

rectly assessed probabilities over the 27-element set R. But, in fact, the ex- 

perts were not called upon to assess probabilities in this way. Instead, judging 

that the variables E ,  F, and R were independent, Thorp, McClure, and Fine 

presented each expert with three assessment problems, one for each of the sets 

s 1 ~  = (50,000; 60,000; 70,000}, OF = (0.635, 0.675, 0.725}, and $ 2 ~  = (1, 2,4). 

They multiplied the appropriate probabilities provided by each expert to construct 

probability measures P I , .  . . , P6 on fl = $ 2 ~  x QF x QR, and then constructed 

and as the lower and upper envelopes of the family {PI,. . . , P6). 
The crucial question is whether the probability measures P on f2 compatible 

with all of the evidence are precisely those P E P(P,F).  But the evidence in this 

case is manifested no t  only in the probabilistic assessments of the s ix  experts for 

61 



t h e  three variables E ,  F, and R, but also in the judgment  that these variables are 

independent .  By their very construction, the probabilities PI,. . . ,Ps incorporate 

that judgement.' But the vast majority of probability measures P E ?(E, p) violate 

that judgement. Moreover, we would argue that there are probability measures P 

on a, compatible with all relevant evidence, and lying outside P(p,F) .2  So P(E,P) 
is in some ways insufficiently restrictive, and in other ways unduly restrictive. 

In what follows we describe what we regard as the correct approach to delineat- 

ing the set of probability measures on SZ compatible with all of the relevant evidence. 

The following three tables (5.1)-(5,3) record the experts' probability assessments for 

the variables E, F ,  and R (first three columns of each table), expanded by us in 

the obvious way to record the probabilities of all nonempty, proper events, and with 

column minima and maxima designated: 

Table 5.1. Energy Demand (E) 

{ 50K) { 60K) { 70K) { 50K, 60K) { 5 0 K ,  70K} { 60K, 7 0 K )  

1 0.05 0.6 0.35 0.65 0.4 0.95 
2 0.625** 0.25" 0.125 0.875 0.75 ** 0.3 75** 
3 0 * 0.6 0.4** 0.6 * 0.4 1 
4 0.6 0.4 0 "  1 ** 0.6 0.4 
5 0.3 0.55 0.15 0.85 0.45 0.7 
6 0.02 0.88** 0.1 0.9 0.12 * 0.98 

** = column maximum 

* 

* = column minimum; 

The probability measures on Q,y, Q p ,  and QR compatible with the evidence, 
as manifested in Tables (5*1)-(5.3), are easy to delineate. Let us consider, for 
example, the case Q E  = (50K, 60K, 70K}, writing 50K = e l ,  60K = e2, and 
70K = e3 for short. Also, let us denote a typical probability measure on f i ~  by E, 

and write €(el) = €1, E(e2) = €2, and ~ ( e 3 )  = €3 for short. It seems obvious that the 
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Table 5.2. Load Factor (F) 

i { .635} { .675} I { .725} 1 {.635, .675} { 635, -725) { -675, -725) 

* = column minimum; ** = column maximum 

Table 5.3. Coal Price Increase (R) 

* = column minimum; ** = column maximum 

probability measures on S2,g compatible with the evidence manifested in Table 5.1 
are precisely those E satisfying 



0.12 5 €1 + €3 I 5 

0.375 5 €2 + €3 5 1 (5.12) 

In fact, (5.12) may be considerably simplified, for the lower and upper bounds 
stipulated there are values of the lower envelope and upper envelope of the experts' 
probability measures on OB. And it may easily be proved that the values of lower 
envelopes may always be deduced from values of upper envelopes in (5.12), (e.g., 

€3 5 0.4 and €1 + €2 + €3 = 1 imply that 0.6 5 €1 + €2,  etc.). This means that the 
left-hand inequalities in (5.12) are all redundant. Hence the probability measures 
on f l ~  compatible with the evidence manifested in Table 5.1 are precisely those e 
satisfying 

(5.13) 

Similar considerations with respect to S - 2 2 ~  = (0.135, 0.675, 0.725) = {fi, f2,f3} 

dictate that the probability measures 'p on QF compatible with the evidence mani- 
fested in Table 5.2 are precisely those satisfying 

(5.14) 

where ( p ( j i )  = (pi, i = 1,2,3. 
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Finally, the probability measures p on RR = {1,2,4} = {q,  7 - 2 , ~ )  compatible 
with the evidence manifested in Table 5.3 are precisely those satisfying 

(5.15) 

where p ( r i )  = pi ,  i = 1,2,3. 

What then are the probability measures 7r on R = 523 x f l ~  x RR compatible with 

the evidence manifested in Tables (5.1)-(5.3) and in the judgement that E ,  F, and 

R are independent? They are precisely those 7r constructed by choosing numbers 

€ 1 ,  €2, €3 satisfying (5.13), VI,  9 2 ,  p 3  satisfying (5.14)) and p 1 ,  p2)  p3 satisfying 

(5.15) and defining 

x(ei7 f j t  r k )  = E i Y j f k  (5.16) 

Now with 7r specified by (5.16), the expected value of C with respect to 7 r ,  &(c) 

is given by the standard formula 

E?I.(C) C ( e i ,  fj, ‘k) E i V j P k .  (5.17) 

From the standpoint of the foregoing analysis, the appropriate lower and upper 
1 s i , j , k 5 3  

bounds on expected cost are given by &(C) and €*(C), the respective solutions to 

the following nonlinear optimization problems: 

(5.18) 
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subject to the constraints (5.13), (5.14), and (5.15), and with the coefficients 

C(ei, fj, ~ k ) ,  computed by a standard production costing algorithm, given the in- 

formation in Table (5.1). 

The solutions to (5.18) are: 
E,(C) = $1.081 B ,  attained when 

€1 = 0.625 €2 = 0.375 €3 = 0.000 (5.19) 
631 = 0.050 ~2 = 0.575 9 3  0.375 
pi = 0.250 p2 = 0.700 p3 = 0.050 

and 
E*(C) = $1.542 B ,  attained when 

€1 = 0.000 €2 = 0.600 €3 = 0.400 (5.20) 
91 = 0.400 432 = 0.550 9 3  = 0.050 
p1 = 0.100 p2 = 0.525 p3 = 0.375 

Note that these bounds on expected production cost comprise a wider interval than 

[€p(C), €F(C)] = [$1.159B, $1.438B], computed by Thorp, McClure and Fine using 

C hoquet expect at ion. 

To see why this happens, consider first (5.19), and, in particular, the event 

A = “E = 50 & R = 1“. The probability measure n on R defined in (5.19) 

assigns n(A) = (0.625)(0.250) = 0.15625. But from Tables (5.1) and (5.3), we have 

P ( A )  = P2(A) = (0.625)(0.125) = 0.078125. So n violates the condition n 5 P 
posited by Thorp, McClure, and Fine (reasonably so, we hope by now to have 

convinced the reader). Moreover, it does so by putting substantial probability on 

the three scenarios associated with the lowest costs. 

- 

In the case of (5.20), consider the event A’ = “E = 70 &R = 4”. The probability 

measure 7r on R defined in (5.20) assigns n(A‘) = (0.400)(0.375) = 0.150. But from 

Tables (5.1) and (5.3), we have P(A‘) = Pz(A‘) = (0.125)(0.375) = 0.046875. So 

this n also violates n 5 P ,  and by putting substantial probability on the three 

scenarios associated with the first, second, and fourth highest costs. 

We remark in conclusion that the method of bounding expected values illus- 

trated above applies in principle to a wide variety of problems. The constituent 
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random variables need not be independent decision nodes could be included, and 

the constraints on their probability distributions need not take the form of upper 

and lower probabilities. Any constraints yielding a closed, convex, polyhedral set of 

distributions for each constituent variable can be accommodated. Despite the non- 

linearity of the objective functions arising in these cases, the special nature of these 

functions appears to admit certain promising computational economies. We intend 

in the future to subject this class of objective functions (which have apparently not 

been investigated by operations researchers) to a detailed study. 

Notes 

1. Here is a simpler example that illustrates the point. There are two random 

variables, E and F ,  judged to be independent, and taking their respective 

values in the sets RE = {el, ez} and RF = {fit f2}. Two experts assign 

probabilities to RE and OF as follows: 

el e2 fl f 2  
1 7 2 1  expert 1 g g 3 

expert 2 f $ 5 2 

Using independence, their assessments are then extended to singleton sub- 

sets of R = RE x RF as follows: 

w1 = (e1,f1) w2 = (e1,f2) w3 = ( e2 ,h )  w4 = (e2,f2)  
7 2 

24 24 24 24 
- 14 - 1 - - expert 1 
8 

24 
- 4 expert 2 24 24 24 - 8 - 4 - 

and then to arbitrary subsets of s1 by additivity. The lower and upper 

envelopes, and F,  of these two probability measures are then com- 

puted. For example, P({w~}) = 4/24, P((u2)) = 8/24, P({w3}) = 
- - 

- - - 
14/24, p({w4})  = 8/24, p ( { ~ , ~ a } )  = 12/24, P ( { w ~ , ~ Q } )  = 

16/24, p({wl ,w4})  = 12/24, p ( { W 2 , w 3 } )  = 15/24, P ( { w 2 , W 4 } )  = 
- - - 



- 
20/24, 

computed similarly. 

P( (w1, W Q ,  w4} )  = 23/24, and F( { 202, w3, w4)) = 22/24, with e 
Now consider the probability measure P such that 

P ( { w l } )  = 4/24, P((u2)) = 8/24, P({u3}) = 5/24, and P ( { w } )  = 7/24, 

and extended to arbitrary subjects of R by additivity. One may (laboriously) 

check that P ( A )  5 P(A)  5 p(A) for all A = 0, i.e., that P E P(p,p).  On 

the other hand, denoting the marginals of P on QE and f i ~  by PE and PF, 

one has, for example, P({(el ,f i)))  = 4/24 whereas P E ( { e l ) )  x P F ( { ~ ~ ) )  = 

(4/24 + 8/24) x (4/24 + 5/24) = 3/16, violating the judged independence of 

E and F.  

2. In the example of note I, above, take expert 1’s probabilities for 

0~ and expert 2’s probabilities for Q p  and invoke independence of E 

and F ,  getting the probability assignment Q, where Q({(el,fl)}) = 

1/8 x 1/3 = 1/24, Q({(ei,f2>)> = 1/8 x 2/3 = 2/24, Q(((e2,fi))) = 

? / 8  x 1/3 = 7/24, and Q(((e2, f2)))  = 7/8 x 2/3 = 14/24. Since, for ex- 

ample, Q({(e2,f2)1) > p({(e2,f2)}) = 8/24> Q $ P(P ,P) -  But Q is cer- 

tainly compatible with all of the evidence, as manifested in the experts’ 

probability assessments and the judged independence of E and F .  
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6. FACTORS UNDERLYING AND 
AFFECTING UNCERTAINTY ESTIMATES 

Up to this point, our attention has focused almost exclusively on the quantitative 

aspects of uncertainty. Methods for representing and manipulating uncertainty have 

been presented as have several methods for creating upper and lower probability 

functions. The purpose of this section is to take a step back and explore several 

associated issues. 

First, what factors underlie uncertainty about quantitative estimates? How 

much can be known about an estimate? How does this knowledge, or lack of it, 

affect the specification of imprecise probabilities and the ranges between upper and 

lower probabilities? Answers to these questions are probed in Section 6.1 and must 

be explored for anyone to intelligently apply the methods outlined in the previous 

three sections. 

Second, how does understanding aspects of uncertainty about quantitative esti- 

mates relate to the value and cost of information for IRP? The conclusion one may 

draw from Section 6.1 is that in many instances, there are limits to what one can 

know about the true value of a variable. Section 6.2 explores this observation in 

more depth. 

Lastly, how can the discussion of Section 6.1 and 6.2 be of practical use to 

utilities preparing IRPs? Section 6.3 presents an extended example of the use of 

the framework and its implications for decision making and collecting additional 

information. 

6.1 DESCRIPTORS OF UNCERTAINTY: QUALITATIVE FRAMES 

The purpose of this section is to outline a framework to describe uncertainty 

about an estimate. The framework takes the form of a frame or checklist. Frames 

consist of a set of descriptors that can be used to describe every instance of a class of 
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objects, situations, concepts, etc. For example, a frame for automobiles would have 

descriptors such as: color; engine size; number of doors; price; and manufacturer. 

The challenge is to develop a frame for automobiles that allows one to describe 

every instance of an automobile as simply and effectively as possible. 

Table 6.1 presents a frame that consists of qualitative descriptors, for the most 

part, about uncertainty about a quantitative estimate. The frame of Fig 6.1 is 

intended to allow one to describe how uncertainty afflicts most every kind of quan- 

titative estimate imaginable. The benefits of such a frame for IRP me that it could 

provide: a systematic basis for understanding uncertainty in an estimate; a system- 

atic way for comparing uncertainties among estimates; and insights about what can 

and cannot be done to reduce uncertainty in an estimate. 

The frame presented in Fig. 6.1 draws upon previous work by Funtowicz and 

Ravetx (1990) and Tonn and Schafhauser (1992). However, what is presented below 

is more comprehensive and better tailored to the needs of IRP. 

* Basic Frame 

The entire frame has three major components: the basic frame; the uncertainty 

protocol; and the use value frame. The basic frame has four descriptors: the name 

of the variable; the estimate; the unit of measurement; and the estimator class of 

the estimate. For example, the name of the variable could be the price of oil in June, 

1994, the estimate could be $17, the unit would be per barrel, and the estimator 

class would be mean. Other estimator classes include: expected value; median; 

mode; standard deviation, etc. 

* Uncertainty Protocol 

The uncertainty protocol is composed of four subframes: the quantitative repre- 

sentation frame; the inherent uncertainty frame; the operational uncertainty frame 

and the use value frame. The first expresses uncertainty in forms as discussed in 
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2.0-5.0. The other three frames capture uncertainty about the estimate, regardless 

of its intended use. 

Table 6.1. Qualitative frame about uncertainty about a quantitative estimate 

Basic Frame Name - (N) 
Estimate - (E) 
Unit of measurement - (U) 
Estimation class (e.g., expected value) - (EC) 

Uncertainty protocol 
Quantitative 
represent at ion 
frame 

Inherent Uncer- 
tainty frame 

Operational Un- 
certainty frame 

Use value frame 

Uncertainty measure type - (UM) 
Uncertainty measure specificat ion - (SP) 
Upper bound (e.g., on expected value) - (UB) 
Lower bound - (LB) 
Level of confidence - (LC) 
Fundamental knowledge that can be gained about the estimate 

Predictability of system encompassing the variable - (SYS) 
Degree to which variable space can be understood - (VS) - 
- (FN) 

Soundness of underlying theory (TH) 
Data collected versus data required (DR) 
Quality of underlying data (DQ) 
Reasonableness of estimation methods (EM) 
Informativeness (I) 
Time robustness of the estimates (TR) 
Relationships between the actual variable and variable needed 
for policy context (CR) 
Non-generation of actual variable needed for policy context - 

Policy relevance (PR) 
(GN) 

- Quanti tat ive  Representation Frame 

This frame has five components: uncertainty measure type; uncertainty measure 

specification; upper bound; lower bound; and level of confidence. For example, 

one uncertainty measure type might be an imprecise probability. Others might 

include fuzzy sets, certainty factors, and classical probability. The specification 

relates to the form of the uncertainty function. Thus, one could have uniform 

and normal distributions or discrete functions. The upper and lower bounds are 
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applicable for both continuous and discrete specifications. In the case of an upper 

and lower probability, the level of confidence would be 100%. In the case of a normal 

distribution, the upper and lower bounds might pertain to a 95% confidence interval, 

for example. 

- Inherent Uncertainty Frame 

This frame has three components: fundamental knowledge (FN) that can be 

gained about a variable; predictability of the system encompassing the variable 

(SYS); and the degree to which the variable space can be understood (VS). Figure 

6.1 presents scales for each of these components. Variables described by the left- 

hand portion of the figure are said to have more inherent uncertainty that those 

described by the right-hand portion of the figure. It is argued that inherent un- 

certainty cannot be overcome by more time and effort (as opposed to operational 

uncertainty described below). 

For example, compare a forecast for electricity demand fifteen years from now to 

determining how much it cost to replace a transformer at a substation last month. 

In the later case, the goal is to establish a fact, the system under question (i.e., 

transformer replacement at a substation) is small scale and orderly, and the variable 

space (;.e., dollars expended) is well understood. There are no inherent reasons why 

there should be uncertainty about the cost. 

Contrast this to the former. A long-range forecast contains high intrinsic un- 

certainty because the future is not knowable, the socioeconomic system generating 

electricity demand is chaotic at best, disorderly at worst, and the variable space 

(i.e., what contributes to electricity demand) fifteen years hence cannot be said to 

be well understood. Thus, even in the best of circumstances, there will be uncer- 

tainty about the forecast. 
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FN 

SYS 

vs 

Logical Low 
prediction 1 intrinsic 

uncertainty I I uncertainty 

Virtually Large scale/ Medium scale/ Small scale/ Highly 
tractable disorderly chaotic orderly intractable I 

Poorly Well Well 
Undefinable understood defined understood 

Fig. 6.1. Inherent Uncertainty Frame Scales. 

- Operational Uncertainty Frame 

This frame has four components: soundness of underlying theory (TH); data 

collected versus data required (DR); quality of underlying data (DQ); and reason- 

ableness of estimation methods (EM). Figure 6.2 presents scales for these compo- 

nents. Variables described by the left-hand portion of the figure are said to have 

high levels of operational uncertainty, those on the right-hand side low levels of 

operational uncertainty. It is argued that time and money can be used to overcome 

operational uncertainty. 

To see this, let’s continue with the two examples presented above, the fifteen 

year forecast and the transformer replacement costs. With respect t o  the later, 
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TH 

DR 

DQ 

EM 

Weak 111 Strong 

Completely I I zuirements 
inadequate 

Completely 
inappropriate 

Completely 
appropriate 

Fig. 6.2. Operational Uncertainty Frame Scales. 

theory may not be an issue. One just needs to track the costs. Data to be collected 

include bills from contractors and vendors and internal costs for labor, materials, 

overhead, etc. Some uncertainty may arise if vendor bills are late in coming and/or 

if the bills can be revised within some period of time. The methodology used to 

arrive at the cost is not a problem in this case either. 

The forecast, like many IRP exercises, does entail operational uncertainty. The 

soundness of economic, demographic, etc. theory underlying the forecast is probably 

in the middle of the scale. It is rarely the case where a utility has all the data one 

can imagine on-hand for the analysis. Quality of data, from billing histories to end 

use metering to measure life-times, is never perfect and can usually be improved in 

some way. Estimation methods could be excellent (e.g., econometric methods) or 
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ad hoc (e.g., back of the envelop trend lines). Thus, both operational and inherent 

uncertainty are issues with long-range forecasting. 

* Use Value Frame 

Estimates have lives independent of their use but in appropriate uses of esti- 

mates may cause uncertainty within certain contexts. The Use Value Frame cap- 

tures this observation in five components: informativeness of the estimate for the 

policy context (I); time robustness of the estimate (TR); relationships between the 

actual variable and the variable needed for the policy context (CR); generalization 

of the actual variable needed for the policy context (GN); and policy relevance (PR). 

Figure 6.3 provides scales for these components. Variables described by the left- 

hand side of the figure are essentially worthless for the context, e.g., IRP, where as 

variables described by the right-hand side are potentially very valuable, depending 

on the other aspects of uncertainty involved. 

Informativeness refers to how useful the range of the estimate is for decision 

making. An informative range is small enough to rule out many decisions. An 

uninformative range is so large that anything is still possible. Thus, a forecast with 

a very large range is not very informative for utility decision makers. 

Time robustness refers to the shelf-life of the estimate. If it is only good for 'a 

week or a month, it would not be useful. The estimate would also not be useful if it 

measures something different than what is needed for IRP. For example, an estimate 

of tons of SO, emitted into the atmosphere is not a perfect estimate for the potential 

damage caused by the emissions but may be the best on hand. Similarly, knowing 

emissions of SO, from one type of power plant using one type of fuel may or may 

not be logically generalizable to a utility's entire resource base. 
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Lastly, not all estimates are equally important to an IRP. It does not make 

sense to spend more time and money to reduce uncertainty about an unimportant 

variable. Thus, the policy relevance component was added for completeness. 

We understand that it would require a good bit of work to create a qualitative 

frame for every estimate generated in preparing an IRP. However, we argue that 

it would be a useful exercise for the most important estimates to at least assist 

utilities in deciding how to spend their limited data collection and analysis funds. 

The reasons why are discussed in more detail next. 

Highly 
informative 

Completely 
J uninformative 

TR Temporally 
obsolete 

CR One in 
correlation No d s a m e  

GN Vast 1 NO generalization 
generalization required 

PR Extremely 
Irrelevant I relevant 

Fig. 6.3. Use value frame scales. 

6.2 IMPLICATIONS FOR VALUE AND COST OF INFORMATION 
There are at least two important observations to be drawn from the qualita- 

tive frame presented above. First, there are some aspects of uncertainty which 
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utilities cannot overcome. Second, there are other aspects of uncertainty that c m  

be overcome, if it makes sense to do so. Let’s take these points in order. 

Imagine we have an upper and lower probability around a long-range forecast 

for the price of a barrel of oil. The estimate was made using the opinion of one 

expert who takes an unconventional approach to understanding the oil markets. The 

utility was able to elicit from the expert an upper and lower probability for this 

estimate. However, the utility felt that the range was too narrow given the inherent 

uncertainty in forecasting oil prices and did not completely trust the judgment of 

the expert, so the range was broadened to accommodate more inherent uncertainty 

and increased operational uncertainty. 

Figure 6.4 presents the situation faced by the utility. The current information, 

in terms of upper and lower probabilities around an estimate, is signified by (X,Y). 

The utility has the option of consulting additional experts, building an econometric 

model, collecting historical oil price data, etc. The additional information would, we 

strongly argue, reduce the range between the upper and lower probability around 

the estimate but could not reduce the difference to zero because of the inherent 

uncertainty the forecast. Thus, it is virtually inconceivable that an additive, point 

probability could be established for the estimate. 

Figure 6.5 presents this observation from a cost point of view. The figure in- 

dicates generally what level of information is currently on hand and what the cost 

was to collect the information. As is generally assumed, the figure indicates that 

at some point the added cost of collecting the next piece of additional information 

increases as one nears what one could theoretically collect. However, different from 

most value of information models, the figure indicates that the threshold is reached 

when one overcomes only operational uncertainty. Increased expenditures cannot 
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Fig. 6.4. Limits of knowledge. 
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Fig. 6.5. Cost of information. 
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overcome inherent uncertainty. An important conclusion of this observation is that 

utilities will always be making decisions that involve uncertainty. 

Usefulness 
of 
Information 

Cost of Information 

Fig. 6.6. Usefulness of Information. 

Figure 6.6 adds the usefulness frame to the picture. In this case, utilities can 

expend more time and money to overcome operational uncertainty and improve 

the usefulness of the information at hand. For example, data could be collected 

for more relevant variables and better methodologies could be employed to reduce 

the need to generalize findings. It is possible for utilities to have completely useful 

information, even if uncertainty still plagues the estimates. This could happen if 

the information is sufficient to provide the necessary guidance to  the utility about 

its current and future decisions. Thus the area between the maximally obtainable 

useful information and completely useful information could be zero, although it is 

hard to conceive of such a case in real life. 
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6.3 EXAMPLE 10: FORECASTING IMPORTANT FACTORS IN IRP 
This example takes a broad look at four variables that are important in many 

IRPs: oil prices; supply costs; electricity demand; and environmental damages. The 

goal is to forecast each of these variables five years hence. Let’s assume the following: 

oil prices were forecast using a panel of experts; supply costs were generated using 

a highly accurate model of the utility’s physical system; electricity demand was 

forecast using a time series model; and environmental damages were calculated 

using information from other utilities and other sources. 

Table 6.2 presents hypothetical results of an exercise to create qualit at ive frames 

for each of these four variables. The values in the table are meant to be illustrative 

only and in all likelihood do not conform to any one utility’s situation. 

Each of the four variables represents a different pattern of uncertainty. The 

oil price estimate suffers from much inherent uncertainty, and only moderate op- 

erational uncertainty. Mainly, the time horizon of the forecast is very long for an 

oil forecast, which creates a great deal of fundamental uncertainty. The panel of 

experts convened were the best available and why the oil markets are chaotic is well 

understood. Possibly better elicitation methods could have been used to improve 

the quality of the data. 

The range of oil prices is not very informative for those engaged in IRP. The 

bottom line is that while the variable is highly relevant to IRP, there is not much 

the utility can do to improve its information or the usefulness of the information 

for IRP. Thus, it might not make sense for the utility to spend additional time or 

money on oil price forecasts. 

Uncertainty about supply costs is quite different although the conclusion is the 

same. The operation and maintenance of.the physical system are quite well known. 

The system will remain stable over the five year planning horizon. Data collection 
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Table 6.2. Qualitative frames for important IRP estimates* 

"Assume five years hence 
+Scale values are: Very High (VH), High (H), Moderate (M), Low (L), 

Very Low (VL); Lower levels of scale entail higher levels of uncertianty 
E- Estimate 
U-Unit TH - Theory 
EC - Estimator class 
UM - Uncertainty Measures DQ - Data Quality 

VS - Variable Space 

DR - Data Requirements 

EM - Estimation Methods SP - Uncertainty Measures 
Specification 

UA- Upper Bound 
LB - Lower Bound 
LC - Level of Confidence 
FN - Fundamental Nature 
SYS - System 

I - Informativeness 
TR - Time Robustness 
CR - Correlation 
GN - Generalizability 
PR - Policy Relevance 
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processes are in place to collect all relevant data on costs and the data on whole are 

very reliable. The forecast is tight, which IRP analysts desire. Overall, there is little 

uncertainty with respect to supply costs and the estimates are highly informative. 

Thus, a conservative conclusion would be for the utility to continue doing what 

it has been doing with respect to data collection, modeling and analysis. 

The electricity demand forecast occupies a middle ground. Five years is a 

substantial time horizon for a system that is not well-behaved but not so long that 

demand is expected to  change dramatically. Thus, there is only moderate inherent 

uncertainty in these estimates. Likewise, people have a decent understanding of 

electricity demand, although knowledge could be much better in the residential and 

information technology sectors, for example. Data on hand are of decent quality 

and the times series estimation technique applied to the data was not the most 

simplistic nor the most sophisticated available. Unfortunately, only sketchy past 

data were collected with which to  estimate the times series model. 

Thus, several things could be done to overcome operational uncertainty: collect 

better data; improve the quality of the data collected; and use a better estimation 

technique. It might be worthwhile for the utility to do this because the informa- 

tiveness of the current estimates are only moderate. 

The environmental damage estimates in this example exhibit the most uncer- 

tainty. The range is extremely large, from virtually inconsequential to very signif- 

icant. Therefore the informative value of the range is very low. The estimates are 

plagued with high inherent uncertainty (e.g., the variable space is not well under- 

stood) and high inherent uncertainty (e.g., data are sparse and not of high quality). 

In order to make any estimates at all, proxy variables were used in place of more 

appropriate variables and other studies were generalized more than they probably 

should have been. 
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There is much that can be done to improve the environmental damage esti- 

mates, including the collection of better and more comprehensive data, the use of 

better estimation techniques, and the development of more robust theories about 

the environment and emissions from power plants. Investing in these activities ap- 

pears worthwhile, given the very high policy relevance of the variable and the large 

range of the current estimates. 

In making decisions about how to improve the estimates of these four variables, 

the utility needs to consider the cost effectiveness of its analytical investments. 

For example, it probably would not be cost effective to spend additional time and 

money to improve the supply cost estimates because they are already informative 

and entail little uncertainty. 

On the other hand, the oil price and environmental damage estimates are not 

very informative at this time and the electricity demand forecast is only moderately 

informative. It is debat able whether any investments could improve the usefulness 

of oil price forecasts, given high levels of inherent uncertainty. Additionally, invest- 

ments in environmental analysis may not yield positive payback for many years. 

The utility needs to assess costs and time horizons with these investments and the 

sensitivity of decisions to better information when weighing how to allocate scare 

research and analysis dollars to reduce uncertainty. 

6.4 SUMMARY 

This section presented a qualitative framework within which to understand 

causes of uncertainty in quantitative estimates of variables of importance in IRP. 

The frame has several components, relating to the quantitative representation, in- 

herent and operational aspects of uncertainty, and how the context for using the 

estimates may cause uncertainty. It was shown at a theoretical level how aspects of 

uncertainty may impact costs for reducing uncertainty in IRP. 
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There are several issues associated with the frame that need to be considered. 

First, it is not clear that utilities will want to develop frames for all variables that 

are encompassed in IRP. The frame requires a fair amount of information and a 

number of judgments that may prove difficult to make. Thus, as a first step, it is 

recommended that the frame be tried on a few of the most important variables. 

Over time, utilities can develop frames for additional variables. A positive aspect 

of the frame is that its structure is very amenable for a database application, such 

that a database about uncertainty about IRP variables could easily be developed, 

maintained and accessed as needed. 

Second, additional use of the frame is needed to evaluate whether its specifi- 

cation as depicted in Fig. 6.1 is best suited for IRP applications. It is possible, 

for example, that the inherent uncertainty components could be clearer and that 

some components, such as related to data quality, could be expanded into additional 

subframes. 

Lastly, additional thought is needed to translate information in the frame into 

decisions about how to most cost effectively reduce uncertainty in IRP. As illus- 

trated in Example 10, it is not always clear that resources should be devoted to 

reducing uncertainty about the most uncertain and least informative variable if 

such investments take time, and offer no guarantee of success. Existing methods for 

conducting value of information analyses are seriously deficient because they assume 

as a starting point what decisions would be made given perfect information. As we 

have seen, it is rare that one could even contemplate having complete information, 

much less information not plagued by operational and use value uncertainties. We 

believe that if utilities completed frarnes for the most important IRP variables, 

qualitative value of information judgments can be confidently made. More rigorous 

and quantitative value of information analyses await the results of future research. 
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7. CONCLUSIONS, REFLECTIONS 
AND RECOMMENDATIONS 

This report addresses numerous aspects of the topic of uncertainty. The brief 

history of the concept indicates that people have been thinking about uncertainty 

for a very long time and that ideas have changed radically over time. Imprecise 

probability has its roots in the early 18th century, and, almost paradoxically, can 

be seen as a generalization of what has become to be known as classical probability. 

Several examples illustrated how to specify an imprecise probability either directly 

or indirectly (e.g., using an incomplete contingency table). 

Methods for manipulating imprecise probabilities were also presented based on 

a general framework of evidential reasoning. Methods such as consensus and condi- 

tionalization were defined both conceptually and mat hematically. Several examples 

illustrated how different pieces of evidence can be synthesized in various ways to 

provide more insight into what one knows about a problem. 

The import ant problem of calculating expected values was explored in-depth. 

One example illustrated how to use a standard formula due to  Choquet to calculate 

expected values involving upper and lower probabilities. The better part of an entire 

section of the report presented a more sophisticated and theoretically attractive 

method based on non-linear optimization. 

In addition to focusing on techniques, the report also addressed factors that 

cause uncertainty in quantitative estimates. The qualitative frame offers one means 

for utilities to keep systematic track of factors that cause uncertainty in important 

variables in IRP and to facilitate decisions about how to allocate scare resources to 

reduce uncertainty. 

Numerous research issues remain just given the foci of this report. With respect 

to methods, it was reported that a combination rule has yet to be developed to 
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handle imprecise probabilities, although some progress is reported in the Appendix. 

In addition, additional research is required on conditionalization methods, methods 

to synthesize two independent imprecise probability functions, and on extending the 

non-linear optimization approach for calculating expected values in a decision tree. 

With respect to the qualitative aspects of uncertainty, the proposed qualitative 

frame needs to  be implemented to test its usefulness and the robustness of its 

components. Ways to use the frame to make better decisions regarding the cost 

effective reduction of uncertainty need to also be explored. 

There are two major topics that were not addressed in this report that are 

crucial to utility decision making under uncertainty and IRP. One topic is broadly 

defined as psychuZugicaZ aspects of uncertainty. The other is broadly defined as 

decision methods. Let’s reflect on each in order. 

Psychological aspects of uncertainty has two main components: elicitation of 

uncertainty judgments from experts; and the communication of uncertainty. With 

respect to the former, a large body of psychological research indicates that at the 

very least, people, and experts, have difficulties in expressing and thinking in terms 

of classical probabilities. Experts tend to be overconfident about their diagnoses, 

which creates a false sense of knowledge. Also, experts have good and bad days, 

meaning that the reliability and validity of their judgments is not consistent from 

one day to the next. People in general have a difficult time in conceptualizing low 

probabilities, over-emphasize certain informat ion, and do not t hi& well probabilis- 

tically. 

The relationship between these findings and IRP is this: the uncertainty meth- 

ods presented above are only as good as the uncertainty estimates needed by the 

methods, and, apparently, it is not a trivial task to elicit good uncertainty estimates 

from experts. A fair amount of research has been conducted on aids to help experts 
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think about classical probabilities (e.g., probability wheels, sliding bars) but little 

research has been done with respect to imprecise probabilities. The qualitative 

frame can be seen as a conceptual aid to experts so that they do not overstate their 

knowledge by constructing lower and upper probabilities with ranges that are too 

narrow but no research has been done to tie the frame to uncertainty elicitation. 

Future research in IRP should explore these issues in more depth. 

Communicating uncertainty is crucial to the success of any analytical endeavor. 

Within a utility, analysts need to communicate to executives. In addition, utilities 

need to communicate with their shareholders, customers, PUCs, and interest groups. 

A large body of research falling under the rubric of risk communication indicates 

that the communication of uncertainty and risk is very difficult, and if done so 

poorly, can actually lead to unpredictable and unintended consequences. Our review 

of uncertainty in IRP uncovered many examples of misleading tables and figures, 

which indicates to us that the communication of uncertainty should be an important 

topic of future research on IRP and uncertainty. 

Of course, utilities are not interested in research for the sake of research. They 

are interested in making better decisions. Methods for eliciting, representing, ma- 

nipulating, and communicating uncertainties have to eventually prove their worth 

in improving decision making. This report only peripherally addressed decision 

making through Example 4, which focused on choosing a set of resources. 

Indeed, the literature on decision making under uncertainty is very robust and 

should be summarized for use in IRP. Decision methods are important because they 

provide a second leg for managing uncertainty in IRP. The first leg, addressed in 

this report, encompasses the explicit representation of what one knows and doesn’t 

know. The second leg provides ways of making decisions to reduce risk and take 

advantage of opportunities. 
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For example, one observation we had of the IRPs we reviewed is that they are 

not set, for the most part, in a decision analytic framework. That is, other than 

choosing among a set of resource options, one does not find a classical decision 

analytic model which includes a problem statement, a set of mutually exclusive 

options, a set of evaluation criteria, weights over the evaluation criteria, assessments 

about how well each alternative satisfies each of the criteria given different future 

states of the world, and a method to assimilating this information into an informed 

choice. Uncertainties play a big part in this model, from representing uncertainty 

about the future state of the world to representing uncertainty about the outcomes 

of the different alternatives. 

There are other, more sophisticated decision methods that should be examined 

for use in IRP. Portfolio/options theory is one idea. The irreversibility of decisions is 

another. Multi-criteria decision making is yet another. Research in decision making 

needs to be done in conjunction with research on uncertainty. 
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APPENDIX A 
A Combination Rule for Belief Functions 

This Appendix presents the results of preliminary research on developing a 

combination rule for imprecise probabilities. As will be seen, the research has 

only progressed to developing a fairly complicated procedure for combining Mobius 

Transforms of an arbitrary number of belief functions. 

The Appendix begins with a theoretical discussion on characteristics one might 

desire a combination rule to have (A.1). Next, the Dempster-Shafer Combination 

Rule is presented and critiqued (A.2). Our combination rule for the pieces of ev- 

idence is presented in A.3. The fourth section, (A.4), presents our approach for 

combining an arbitrary number of belief functions. A.5 presents a critique of the 

progress to date. 

A. l  CHARACTERISTICS OF A COMBINATION RULE 

As discussed in 3.0, the purpose of a combination rule is to synthesize pieces of 

evidence that have equal standing that bear on the truth of a member in S2. The 

pieces of evidence are drawn in some manner from the world. Recall Example 6 

where several pieces of evidence where collected and represented as lower probabili- 

ties pertaining to the decision of a large industrial customer. In addition, physicians 

collect pieces of evidence from patients which are synthesized in some manner to 

render diagnoses and juries are presented pieces of evidence which they synthesize 

in some manner to render verdicts. 

Thus, using another analogy, a combination rule is used to synthesize the work 

of a detective. How a detective, or physician, or lawyer, determines which pieces 

of evidence are important is a complicated question. Obviously, the diagnosis or 

conclusion would be heavily dependent upon what pieces of evidence are included 
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and excluded. For our purposes, let’s assume that an inclusionary rule can be 

established, if only by the use of common sense. 

The important consideration with respect to developing a combination rule is 

that it must appropriately handle any conceivable type and sets of pieces of evidence 

that are judged to be worthy of inclusion in the analysis. We argue, for example, that 

a combination rule should handle these three instances in the following manners: 

(I) Weight of evidence focusing: This condition addresses what ought to happen 

when pieces of evidence support each other. Imagine several pieces of evidence that 

all support {a} in some fashion. Taken separately, no piece of evidence overwhelm- 

ingly supports {a}. However, taken together, in case after case, {a} keeps coming 

up, and in the end, the weight of all the evidence clearly points to {a). 

To state this condition more formally, let’s assume that we have a set of evidence, 

e = { e 1 , e 2 . .  .e,}. Also, let A C St, B = {a}, and St = {a ,b , .  . .}. Then, let 

-2 P.(A)  > 0 when A n  B # 4 ,  and F’,(A) = o when A n B = (5, for each ei. An 

appropriate combination rule would yield the following: el C3 e2 8 e 3 .  . . e m  = e,, 

where P,(B) = p.+(B) = 1.0, when the pieces of evidence point to B. 

(11) Resolution of inconsistency: Let’s assume that two pieces of evidence have 

been collected, el and e2,  over the set R = {a ,b ,c ,d) .  Let A = { a } , B  = {b},and 

C = {a,b} .  It turns out that &(A)  = P,(A) = 1.0 and I’,(B) = p2(B) = 

1.0. In other words, the two pieces of evidence point conclusively to  the different 

conclusions! While this situation is unlikely to arise very often in real life situations, 

it is symbolic of the extreme case of a common occurrence where pieces of evidence 

point to inconsistent conclusions. In cases such as this, the combination rule needs 

to find the most logical middle ground. In this extreme case, the result should be: 

el @ e2 = e3, where P,(C) = P3(C) = 1.0. 

90 



(111) Simple support function identity: This third condition specifies an identity 

requirement. That is, it specifies under what conditions the combination of two 

pieces of evidence, El and E2, will yield either El or Ea. Interestingly enough, 

there are at least three identity relationships to choose from. 

First, one could specify that if El = E2, irregardless of how the probability mass 

is specified, then El ,  @E2 = El. Second) one could specify that El 8 E2 = El ,  where 

E2 is the trivial belief function (;.e., M(S1) = 1.0), and El is any belief function. 

Third, one could specify that El 8 E2 = El,  where E1 = E2 and MI ( A )  = A d 2  ( A )  = 

1.00. In other words, the identity holds only when each M-function is characterized 

by all its probability mass resting on the same subset of St. 

We have chosen the third case for the following reasons. One, the first relation- 

ship is incompatible with (I), because it would prevent the focusing of the weight 

of evidence arbitrarily for arbitrarily defined M-functions. Two, the second rela- 

tionship presumes that a piece of evidence that supports no diagnosis should have 

no bearing on the ultimate diagnosis. Our position is this: if the piece of evidence, 

a priori, is deemed crucial to the diagnosis, it should be included no matter what 

specifications the M-function takes on. If it is inconclusive, then it should, as a 

matter of course, lead to higher levels of uncertainty about the diagnosis. 

Given these comments) the third specification is a good compromise. Criterion 

(I) is not violated because there is no possibility of focusing the weight of evidence 

on any subsets smaller than A. Also, it handles the case where both El and E2 are 

trivial belief functions. 

It is desirable for the combination rule to have several mathematical properties. 

These include: 

(IV) Commutativity: El @ E2 = E2 

(V) Associativity: (El @ E2) @ E3 = E1 8 (E2 @ E3) (or any order); 

El; 
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(VI) Monotinicity: El @J E2 = E3, where &(A U B )  2 P 3 ( A ) ,  and &(B)  and 
- 
P3(A U B )  5 F3(A),  and p3(B).  

Future research may reveal additional desirable characteristics for a combination 

rule, or indicate the need for revising I-VI. However, for our purposes, I-VI are quite 

sufficient to critique an existing rule and propose an alternative. 

A.2 DEMPSTER - SHAFER RULE OF COMBINATION 
As far as we have been able to determine, the only combination rule for im- 

precise probabilities proposed in the literature that has been seriously considered is 

traceable to the work of Dempster (1967) and Shafer (1976). As such, the combina- 

tion rule is commonly known as the Dempster-Shafer Rule (DSR) within Dempster- 

Shafer theory, which basically encompasses belief functions and Mobius Transforms 

of belief functions. Thus, the rule and the theory encompasses only a special, but 

important , case of imprecise probability. 

The DSR is most straightforwardly expressed as the Mobius Transform of a be- 

lief function. Recall that a belief function is infinitely monotone (i.e., R-monotone), 

such that: 

P(A,  U . . . U A r )  2 ( -p- 'Z(n  A;) 
I(I(l1 ,... r) id 

I f 0  

The Mobius Transform is: 

M (  E )  = ( - l ) ' E - H l p ( A )  , 
ACE 

where E C R. 

Also, recall that to recreate a belief function from a Mobius Transform, or M- 

function, one should apply: 
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The DSR to combine two pieces of evidence, Ad1 and M2 is: 

hd2(a).3 
M2( bc).2 
M2 (abc4.5 

1 
I - k  z M l ( A )  * M2(B),  for all A C R and B R (A.4) ( c )  M3 =- 

{a} = .09 {a}=.12 {a} =.09 
{b}=.06 {S}=.OS (bc}=.06 
{ab}=. 15 {ad} =.20 { abc}=. 15 

And where C = A n B when C # 0 and where K is the total value of M l ( A )  * 
M2(B) where A n B = 0. The & term can be viewed as a normalization factor. 

Operation of the DSR is best understood through an example presented in 

tabular form (Table A. 1). Let’s assume that we have two pieces of evidence defined 

over R = {a, b, c, d} .  Both El and E2 are belief functions and have been transformed 

to be M-functions. Only the focal elements of each Ad-function are shown in the 

table (;.e., Mi(A) > 0). For comparison purposes, Table A.2 contains the lower 

probabilities for El,  E2 and El @ E2 = E3. 

Table A.l. Example of the Dempster-Shafer Rule of combination 

(-09 + .12 + .09)/( 1 - . 
(.06)/(1 - .OS) = .07 
(.15)/(1 - .OS) = .16 
( .ZO)/(l  - .OS) = .22 
(.06)/( 1 - .OS) = .07 
(.15)/(1 - .OS) = .16 

.OS) = .32 

From (A.4) and the example, it can be seen that the DSR satisfies only two 

of the three major criteria for a rule of combination. As hinted at in the example, 

DSR is good at weight of evidence focusing. Notice that on balance, smaller subsets 

of R have higher lower probabilities in E3 than in El or E2. DSR acts to move 

93 



Table A.2. Lower probabilities for DSR example 

probability mass to smaller and smaller subsets of 0 because of the intersection term 

and because K is, in essence, distributed to the intersections. DSR also satisfies the 

identity criterion (111), the commutativity criterion (IV), the associativity criterion 

(V), and the monotinicity criterion (VI). In fact, DSR always yields a belief function 

if it is combining belief functions. Its behavior is indeterminant if given other kinds 

of imprecise probabilities. 

Unfortunately, DSR is not able to resolve inconsistency criterion (11). Specifi- 

cally, DSR collapses if given a case of maximal inconsistency. Let Ml(a)  = 1.0 and 

Mz(b) = 1.0. In this case, K = 1.0 and there are no subsets over s2 to  normalize 

over. DSR does not yield the preferred result, Mz(u,b)  = 1.0. Thus, while DSR 

meets 5 of 6 criteria, it does not meet the inconsistency resolution criteria, which is 

especially import ant for evidential reasoning. 
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I 

A.3 A FULL EVIDENCE COMBINATION RULE 

Searching for a new combination rule is not a trivial task. Conditions I-VI are 

not specified in such a way that an equation can be logically deduced. Nor are I-VI 

specified as axioms, such that if, by trial and error, a formula is discovered that it 

could be proven that it is the only formula, or at least the only family of formulas, 

to satisfy the criteria. Thus, at the present time, we must be content to explore 

potential solutions to the problem as best as possible. 

Several simple solutions to the problem of combining imprecise probabilities 

For example, one could simply average lower probabilities of were explored. 

M-values over N-pieces of evidence. 

Such simple solutions failed to meet any of the three major criteria (1-111). Also, 

at this time, it has proven especially difficult to develop formulas that use lower 

probabilities directly. 

Given these caveats, this section presents an algorithm for combining two 

M-functions that were transformed from belief functions. The algorithm satisfies 

all three major criteria, and commutativity and monotonicity. Additions to  the 

algorithm are needed to overcome the fact that it doesn’t satisfy the associativity 

criterion (V). These additions are explained in A.4. 

The algorithm takes the same basic conceptual approach as DSR in that each 

subset of R for each piece of evidence is manipulated in some way. The algorithm 

is: 

For everyA n B # 8, M3(A n B )  = Ml(A) * M2(B) * S 
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(A.5) 

(A.5) differs from (A.4) in several significant respects. Most noticeable is that 

the normalization factor K is gone. Instead, (A.5) contains two algorithmic terms, 

not just one, which are invoked depending upon whether A n B is non-null or null. 

In the non-null case, basic probability mass is focused “downward” onto smaller 

subsets of R. 

S can be interrupted as the focusing constant. It regulates focusing based on the 

cardinality of the sets involved. It prevents basic probability mass on large subsets, 

which do not carry much information, from focusing, by the intersection term, mass 

onto very small subsets, which in some sense carry much more information. (A.5) 

accomplishes this task by retaining mass on the original focal elements based on 

(1-S) and a proportional term. 

In the null case, mass is resolved “upward” to larger subsets. R can be inter- 

preted as a measure of dissimilarity between Ad1 and M2. When R = 1.0, the two 

pieces of evidence are completely dissimilar and each has as a focal element whose 

value is equal to 1.0. In this case, (A.5) resolves to M3(AUB) = 1.0, which satisfies 

criterion 11. As the pieces of evidence become less dissimilar (e.g., R t 0), then less 

mass is pushed upward and more mass remains associated with the original focal 

elements . 
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(A.5) satisfies criterion I11 because in this case S = 1 and there are no cases 

where A n B = 0. A quick inspection will indicate that (A.5) is also commutative 

and maintains monotinicity (because E M  = 1.0 in every case and all M-values 

L 0). 

Table A.3 presents some results of -applying (A.5) to various combinations of 

two M -functions. For example, A d 2 8 3  illustrates inconsistency resolution. MI 

completely supports {a} and M2 completely supports {b}. The best one can say in 

this situation, as output by (A.5), is that M2g,3 should completely support {a,b}. 

M484 illustrates focusing of weight of evidence given identical pieces of evidence. 

As indicated, A44 strongly supports { a } ,  weakly supports { b } ,  and provides no 

support to any other diagnosis, either singly or in combination. Assuming two 

pieces of evidence had been collected exactly like M4, their combination yields even 

more weight on { a } ,  as criterion (I) would have. 

illustrates the result of the simple support function criterion (111). Ml,g,z 

illustrates what happens when a trivial belief function, MI,  is combined with a belief 

function that provides complete support to one prognosis, M2. As is indicated, 

M1@2 offers less support for { a }  than does M2 alone. 

A.4 COMBINING N PIECES OF EVIDENCE 

The combination rule specified in (A.5) meets five of the six criteria outlined in 

A . l .  An inspection of (A.5) reveals that it is not associative. In other words, for 

more than two pieces of evidence, the order in which they are combined significantly 

affects the result. More specifically, the last piece of evidence to be combined has 

the most impact on the result. This is a potentially fatal flaw with (A.5), even 

though it is superior to the Dempster-Shafer Rule of Combination because it meets 

the inconsistency resolution criterion. 

97 



Table A.3. Inputs and results of the full evidence combination rule 

To overcome this problem, we explored additional criteria to possibly guide the 

order in which pieces of evidence are combined. Two concepts appear particularly 

important. First, the pieces of evidence should be combined in an order based 

on their informativeness. For example, referring to Table A.3, M2 is maximally 

informative because it indicates the truth is in a subset of fl with just one element, 

(a}. MI is minimally informative. Ms falls in between. Thus, it makes some sense 

to combine MI @ A& 8 M2. 

Second, pieces of evidence should be combined in some way based on their simi- 

larity to each other. In some sense, this criterion argues that there is a meta-physical 

aspect to combining pieces of evidence in that those that are similar should “band” 

together to support their shared diagnosis. Thus, pieces of evidence dissimilar to 

98 



each other should be combined first, followed by pieces of evidence that are more 

similar. 

Conveniently, we already have a measure of dissimilarity, R. Let R’ be the mea- 

sure of similarity and equal l -R for two pieces of evidence. Let 0 = { 01 , 0 2  . . . O N }  

indicate the order to combine N pieces of evidence. Then, let the measure of simi- 

larity in an ordered array of pieces of evidence be: 

N 

R’ = C(l - R(Ei, Ei-1)) * oi . 
2=2 

We would like to  find an order which maximized R‘. 

We have conducted preliminary research on a measure of information (e.g., 

we also refer to it as a measure of determinantness). Let T be the measure of 

information in a belief function. T is defined as, 

Ti for piece of evidence i, is equal to 0.0 when Ei is a trivial belief function. 

Ti is a maximum value when E2 contains a simple support function on a singleton 

subset of 0. The maximum value of T is regulated by the number of members in 

R. The higher cardinality of R, the more information is needed “determining” the 

truth in 0. See Tonn (1993) for an extended discussion of T. To order N pieces of 

evidence from least to most determinateness, we could maximize: 

To order N pieces of evidence, we maximize: 

Max (T’ + E‘) . 
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(A.5)-(A.9) have been coded into software. Specifically, we coded the combina- 

tion algorithms using C to support an expert system application. Currently, the 

software is capable of handling s1 of cardinality four and 2-5 pieces of evidence. 

Table A.4 presents some results for combining more than two pieces of evidence. 

Table A.4. Combining three or more pieces of evidence 

I abcd I 0 I 0.3 I 0.8 I 0.2 1 0.1 1 0.3 I 0.16 0.15 

First, M-Functions Ml,Mz,  and M3 are combined, which resulted in M1~283.  

As is evident from visual inspection, M3 is the least informative of the three vectors, 

followed by M2 and then MI, which is highly informative. With respect to similarity, 

MI supports different conclusions than M2 and M3((a,b}  vs. { q d } ) .  Given these 

observations, one would expect the algorithm to combine M3 with M2 followed by 

MI.  Indeed, this is what the code does, with the results shown in the seventh 
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column of Table A.4. Because the pieces of evidence are somewhat inconsistent, it 

can be seen that support for {a} decreases from MI. 

In the second case, the similarity strongly affects the combination order. In 

combining Ad4, M5 , and A d 6 ,  from visual inspection, M4 and M5 appear quite similar. 

Also, calculations of T indicate that M5 is the most informative, followed by M4 

and M6. Given this information, the code combined MG with M4, and then with 

M5, with the results shown in the eighth column of Table A.4. 

A.5 COMMENTARY 

The combination rule presented herein is actually a fairly complex algorithm 

(A.5). The algorithm has its good points. It satisfies five of six criteria presented in 

(A.l)  that characterize an attractive combination rule. In particular, the algorithm 

has the capability of both focusing the weight of evidence on smaller subsets of s1 

if so warranted or resolving inconsistencies to larger subsets of 0 if so warranted. 

The algorithm is not associative. Additional ideas, captured in (A.6)-(A.9), 

were needed to order pieces of evidence before combination. Ordering based on 

informative value and similarity has face validity but additional research on this 

point is recommended. It would be better to develop an algorithm that is associa- 

tive, but it looks unlikely that such could be accomplished given our current path 

of algorithm development. 

There are several arbitrary specifications within the algorithm. For example, 

one can imagine a whole family of specifications for R and S, that would amplify or 

dampen inconsistency resolution and focusing, respectively. Also, the specification 

for T, T', and R' demand further examination. 

In hindsight, it would be preferable to develop an algorithm, or better yet 

a simple combination rule, that utilizes imprecise probabilities directly, without 
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having to apply the Mobius Transform. Also, the algorithm presented here can only 

handle belief functions with some confidence. A more general version is needed. 

The bottom-line for applied contexts, such as IRP, is that the algorithm appears 

to yield the desired results. It operates on imprecise probabilities, albeit a restricted 

case known as belief functions, as wished. The algorithm was fairly straightforward 

to code. 
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