Documents and Related Materials Associated with the Contents and the Origin of the Los Alamos Technical Series and the National Nuclear Energy Series

RECEIVED
JUN 03 1996
OSTI

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Los Alamos National Laboratory

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Documents and Related Materials Associated with the Contents and the Origin of the Los Alamos Technical Series and the National Nuclear Energy Series

Edward F. Hammel*

*LANL Affiliate
INTRODUCTORY NOTES AND CONTENTS

These materials were obtained primarily from, and with much assistance from, the staff of the Los Alamos National Laboratory’s Report Library in connection with the author’s preparation of an account of Plutonium Metallurgy Work in D-Building during World War II. Also included are a few papers relating to the National Nuclear Energy Series. A Table of Contents follows:

SECTIONS

1. Pages 78, 150, 151, 163, 256, and 257 from LA-2532-MS, Vol. I,
Manhattan District History, Project Y,
The Los Alamos Project by David Hawkins
(These pages deal with the early metallurgy and other topics relating to Pu metallurgy work at Los Alamos.)

2. Pages 102, 103, 207, 209, 210, 211, and 212 from LA-2532-MS, Vol. II
(Same subject as entry 1 above)
by Edith C. Truslow and Ralph Carlisle Smith
(These pages deal with the Los Alamos Technical Series and include Appendix 7:
A Description of the Technical Series.)

3. LAMD-76. This report is a collection of early memoranda relating to the preparation of the Los Alamos Technical Series
(The pages are already numbered: 1–16.)

4. LAMD-770. A detailed outline of the documents incorporated in the Los Alamos Technical Series (The pages are already numbered: 1–13.)

5. The Los Alamos Technical Series:
A Record of the Publications Which Constitute Each Volume of the Series
by Judy Young, Sept. 30, 1981 (The pages are already numbered: 0–5.)

6. A Partial Listing of the National Nuclear Energy Series Volumes

7. “Essential Reference Documents for All Nuclear Energy Collections”

January 15–December 31, 1958
DOCUMENTS AND RELATED MATERIALS ASSOCIATED WITH THE
CONTENTS AND THE ORIGIN OF THE LOS ALAMOS TECHNICAL SERIES
AND THE NATIONAL NUCLEAR ENERGY SERIES

by

Edward F. Hammel

ABSTRACT

The rationale for preparing this document arose from the fact that
the author (who worked in D-Building during WWII) was asked to
contribute a short article on "Plutonium Metallurgy at Los Alamos
During the War" for inclusion in the 50th anniversary book, "Behind
Tall Fences," published in 1993 by the J. R. Oppenheimer Memorial
Committee. I agreed, believing that all of the source material needed
was readily available in the Los Alamos Technical Series, a detailed
account of all of the R&D carried out at Los Alamos from 1943 to
1945.

The obvious place to start was the LANL Report Library. As will
be seen by the perusing the following memoranda and reports (which
were assembled one at a time by following up successive leads), it
finally turned out that, of all six chapters of Vol. 10, "Metallurgy," of
which Cyril S. Smith was the general editor, the only one "not yet
issued" was Chapter I on "Plutonium Metallurgy," which had been
assigned to Eric R. Jette, the wartime Group Leader of the Plutonium
Metallurgy Group." Jette left Los Alamos at the end of August 1956 to
join the Union Carbide Research Institute in Tarrytown, New York,
where he was director until June 1962 when he retired to his valley
home in Pojoaque. In February 1963, he was awarded the US Atomic
Energy Commission citation for meritorious contributions to the
Nuclear Energy Program; shortly thereafter he died.

Before accepting the fact that Chapter I did not exist, the present
author undertook to find out as much as possible about the Los
Alamos Technical Series, including the circumstances relating to its
preparation. The related memos, etc., once retrieved, seemed worth
preserving in a single report—hence this document.

*It was later discovered that this chapter was never written.
SECTION 1
4.29 Another virtue of the hydride program not mentioned in paragraph 4.13 was the interest taken in the preparation and fabrication of this material. Studies were begun, among the first undertaken by the metallurgists, in the art of preparing high density compacts of this material. The result was that although after a year or so it was known that the hydride would not yield an efficient weapon, this material could be easily fabricated, and was used in making experimental reactors.

4.30 The main goal of metallurgical research in this period was the development of techniques for handling the final preparation of active and tamper materials in the large amounts necessary for the bomb. Apart from early work with the hydride, effort was first concentrated on the metallurgy of uranium. This subject was already fairly well developed in other branches of the project. The Los Alamos requirements were, however, somewhat different and more exacting. There was much greater emphasis on maintaining a high chemical purity and on yield. A bomb-reduction technique was developed in the first period and perfected in the second, which admirably satisfied these requirements.

4.31 One of the reasons for the early work on uranium metallurgy was its hoped-for resemblance to that of plutonium, as yet nonexistent in workable amounts. When the first such amounts of plutonium appeared - in March 1944 - techniques for its reduction were already under development; by the end of the first period satisfactory bomb-reduction methods had been perfected.

4.32 The investigation of plutonium metallurgy was one of the principal undertakings of the metallurgical groups. A properly scientific study of the properties of the new element was of necessity limited by the time available and the pressure for usable methods. The standards of usability, moreover, were much harder to meet than in the case of uranium. According to the original purity requirements, all operations would have to be carried out in such a way as to avoid contamination with light elements, even of a few parts per million. This made necessary a large subsidiary program for the development of heavy-element refractories. The substantial relaxation of purity requirements that came with the abandonment of the plutonium gun program at the end of the first period was sufficient to guarantee success. Indeed by this time the original high purity goals had nearly been reached, and some simplification of techniques became possible. In July 1944 experimental proof was obtained of the alpha (room temperature) and beta phases.
of being both dustproof and air-conditioned. It was largely completed and
staff members were moving in by December 1943.

8.6 Immediately upon undertaking his duties, Thomas set up a program
for the extraction of polonium, either from lead dioxide residues that had
been located or from bismuth which could be irradiated in the piles at
Clinton or Hanford. Research on the former problem was undertaken at the
Monsanto Laboratories and on the latter at Berkeley.

8.7 As already noted, a division of labor in many problems continued
under Thomas' direction. For example, in the case of the investigation of
plutonium chemistry as distinguished from purification proper, a Berkeley
group provided information on the oxidation and valence states of plutonium,
while the earliest reports on density and crystal structure of the metal came
from the Metallurgical Laboratory. It might be noted, relative to the last
mentioned work, that the measurements at the Metallurgical Laboratory were
made before it was definitely established by investigations conducted at Los
Alamos that there was more than one allotropic form of the metal (8.38).
However, it was suggested in February of 1944 that the difference in struc-
ture in barium- and calcium-reduced plutonium, reported by Chicago workers,
might be caused by the existence of at least two such forms.

8.8 Further instances of co-extensive programs at various sites oc-
curred in the work of the bomb method of plutonium reduction (8.41–8.43) by
both the Metallurgical Laboratory and the Los Alamos group, although the
work at the former was only on a small scale. The simultaneous develop-
ment was undertaken at these two laboratories of methods of spectrographic
analysis for many elements, in particular the cupferron–chloroform extrac-
tion method with copper spark analysis (8.76). As to the latter, work on the
method continued at Chicago with the final development being done at Los
Alamos.

8.9 Thomas further arranged in the course of the liaison work that
the Metallurgical Laboratory should be primarily responsible for the pro-
curement of two groups of materials for the entire project, reagents of much
higher purity than those commercially obtainable and refractories for use by
the many metallurgical groups. The problem of securing an adequate supply
of satisfactory refractories became increasingly important with the expansion
of work by the Los Alamos metallurgists. These difficulties had been mag-
nified by the fact that initial arrangements for procurement were not satis-
factory. Under Thomas' auspices, however, arrangements for the develop-
ment and production of these refractories were initiated in January 1944,
and it was eventually decided that a group under F. H. Norton at the Massa-
chusetts Institute of Technology was to undertake the research problems
involved. The technical problems considered will be discussed later (8.52).
It should be noted that arrangements were also made about this time to carry out research on the use of cerium sulfide, principally at the University of California. Cerium metal was produced at the Iowa State College, with the bulk of the output being sent to M.I.T. Some subsidiary work was also done at Brown University.

8.10 Despite the most careful liaison efforts, work by the Los Alamos metallurgists was sometimes delayed because of the time lag between changes in requirements for refractories and corresponding changes in the output by the fabrication groups at other sites. In order to overcome this time lag, the local refractory research group was enlarged during April 1944, and production of standard refractories undertaken. Subsequently, at a meeting of the chemistry and metallurgy groups at Chicago in June 1944, it was decided to send the production of Berkeley, Ames, and M.I.T. to Los Alamos in an effort to meet the sharp rise in demand for refractories there. Despite all these efforts, the problem of procuring a sufficient number of the proper types of refractories continued throughout the period covered by this report.

8.11 With the discovery of Pu240, there was no further need for coordination of purification work. The discovery came at a time when it had become clear that the chemical purification of Pu238 could be accomplished, although still with great difficulty. The division of labor between the various sites, moreover, was at that time well worked out.

8.12 The chemistry of U235, and its attendant liaison, presented much simpler questions than plutonium. There were two main problems to be examined by workers at Los Alamos: The processing of the tetrafluoride for experimental work in the laboratory and for the production of weapons; and problems concerning the Water Boiler, such as the decontamination of solutions. The purification of U235 to the tolerance limits specified by the Los Alamos Laboratory was undertaken by Tennessee Eastman at Oak Ridge. Los Alamos chemists were interested in knowing the processing which the material had undergone before shipment and the nature of the analysis done at Oak Ridge. They also specified the chemical form in which the material was to be shipped, for example, as the sulfate, nitrate, or tetrafluoride.
Other questions which arose were connected with isotopic concentration, mixing of lots with different concentrations, methods of assay and the like. One special item of liaison was the cooperation between Los Alamos and the Clinton Laboratories at Oak Ridge on the production of radiobarium–radio-lanthanum for the implosion studies (17.42). In the course of the work in connection with the Water Boiler and particularly the decontamination of
would have virtually exhausted the country's supply.

8.49 Various methods of obtaining high density were tried, among them impregnation with magnesium fluoride, but the fluoride was undesirable from a nuclear point of view. A method of impregnation with beryllium nitrate followed by ignition proved rather poor. The method finally chosen was a hot pressing technique, somewhat unusual for a refractory material.

8.50 Experimentally, the bricks were prepressed in a steel mold, then hot pressed in graphite at 1700°C at pressures in the neighborhood of 1000 pounds per square inch for 5 to 20 minutes. Fifty-three bricks were made for the Water Boiler tamper, shaped to fit around the 12-1/16 inch sphere of the boiler. For this production job the method was a variation of the method described above. The density averaged 2.76.

CRUCIBLE AND REFRACTORY RESEARCH

8.51 The purpose of this important work was to find materials for crucibles and liners which would not introduce contaminants into purified uranium and plutonium. Wetting, sticking, and thermal sensitivity had also to be considered. In this program a great many substances were investigated including cerium sulfides, calcium oxide, magnesium oxide, tantalum, graphite, a tantalum-thorium nitride mixture, zirconium nitride, thorium sulfides, beryllia, uranium nitride, thoria, tungsten carbide, tantalum carbide, titanium nitride, and many others. Cerium sulfide was one of the really hopeful materials found during this period and effort was concentrated on trying to improve the fabricated material's resistance to thermal shock, its main weakness.

MISCELLANEOUS SERVICE ACTIVITIES

8.52 The metallurgists prepared a great variety of materials for physics and ordnance experiments. These involved machining, heat treating, metallographic studies, casting of various metals, electroplating, miscellaneous plastic preparations, and powder metallurgy. Metallographic methods for uranium and plutonium studies were essentially new. This work was done mainly by the Heat Treating and Metallography Group, and the Miscellaneous Metallurgy Group.
in the recovery operations. The need to vary procedures to fit the type of contamination involved made the development of enclosed apparatus difficult. Such apparatus was, in fact, not developed until after the period covered by this history (November 1945 at DP Site). The main safety effort was perforce the careful monitoring of personnel; those who showed exposure in excess of body tolerances were taken away from further exposure until counts returned to normal (9.30).

Plutonium Metallurgy

17.24 When the new purity tolerances were established, all metal reduction methods were eliminated except the stationary bomb reduction of the tetrafluoride. Work continued as before in the field of crucible research for remelting. It became possible, however, to use magnesia since with increased tolerances the danger of magnesium impurities was less serious. A good deal of research was done on the physical properties of plutonium metal, since more than two allotropic phases were suspected, and this was of primary importance in forming operations. Work began on alloys, with the purpose of finding one that would keep a high temperature phase stable at room temperature. The stable room temperature phase, called the alpha phase, is brittle and difficult to work with. Fabrication operations were investigated, as were methods of surface cleaning and protection. Because plutonium is highly susceptible to corrosion, these were far more important topics than in the case of uranium.

17.25 The techniques of metal reduction and remelting were well established by August 1944. This work, of course, was on a very small scale, and the techniques had to be adapted to large scale operation as more plutonium became available.

17.26 Within the limited time available to them, the metallurgists made rather extensive studies of the physical properties of plutonium. The first transuranic element manufactured in kilogram amounts proved to have a remarkable physical structure. It exists in five distinct allotropic forms between room temperature and the melting point, labeled in the order of temperatures at which they are stable α, β, γ, δ, ϵ. It is very electropositive, but had the highest electrical resistivity of any metal. It is very corrosive in water and air.

17.27 Of all the phases the α, or room temperature phase, is the densest. Because this phase is brittle, and the δ and ϵ phases malleable, the material was pressed at δ phase temperatures. When a series of hemispheres
were cast by this method for multiplication studies, warpage and cracks appeared after the metal stood a day or so at room temperature. Evidently higher temperature phases were being retained for a time at room temperature, the warping and cracks being caused by a delayed transition to the denser phase.

17.28 While cleaning and etching plutonium surfaces caused no serious problems, that of protective coating did. A large number of electroplated and evaporated metal coatings were tried, and electrodeposited silver was decided upon for the Trinity hemispheres. At the last minute, however, small pinholes were discovered in the coat as well as blistering caused by the retention of small amounts of plating solution under the coat. Since the scheduled test was only a few days away, it was decided to use the material in this condition, with the blisters polished down to restore the fit of the hemispheres.

Miscellaneous Metallurgy

17.29 The principal metallurgical work of this period, other than uranium and plutonium metallurgy, was that of the Miscellaneous Metallurgy Group in fabricating the gun tamper, beryllium crucibles and refractories, and some boron compacts.

17.30 In crucible research cerium sulfide continued in use for some time after the lowering of purity standards. The material finally adopted for all plutonium and uranium crucibles and liners was a vitrified magnesia developed by the Miscellaneous Metallurgy Group and manufactured at Los Alamos, at the Massachusetts Institute of Technology, and at Ames.

Radiochemistry

17.31 The principal developments in radiochemistry after August 1944 were the following: The implosion initiator program was gotten under way, and the staff of men in this program engaged in polonium research was increased. Radiolanthanum work, in collaboration with the RaLa Group, was carried out at the Bayo Canyon Laboratory. These two groups were formally separated from the Radiochemistry Group in April 1945. Work began with the high-power Water Boiler, with its consequent problem of decontaminating highly irradiated uranium. Foil chemistry was continued. A new sensitive
SECTION 2
THE TECHNICAL SERIES*

9.7 In conformity with other sections of the Manhattan Project, a program was initiated to record, in accessible and edited form, the technical knowledge and gains of the Laboratory. In principle, it was proposed to prepare a "Handbuch der Los Alamos" in analogy with the famous Handbuch der Physik. Titles for seventeen volumes were established in August 1945, as well as volume, and, in some cases, chapter and section editors. Difficulty in establishing a title for the over-all work arose. The original name "Handbuch der Los Alamos" was misleading in its English translation, so the title Los Alamos Encyclopedia was substituted. But inasmuch as it was decided that "encyclopedia" implied an alphabetical arrangement, that too was discarded and the "Los Alamos Technical Series" was finally chosen (Appendix 7).

9.8 Dr. Hans Bethe and Dr. David Inglis were originally responsible for this compilation with the following staff of volume editors

<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Title</th>
<th>Editor</th>
<th>Termination Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>"Relation Between the Various Activities</td>
<td>S. K. Allison</td>
<td>1/46</td>
</tr>
<tr>
<td></td>
<td>of the Laboratory"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>"Experimental Techniques"</td>
<td>Darol K. Froman</td>
<td>2/8/46</td>
</tr>
<tr>
<td>2</td>
<td>"Numerical Methods"</td>
<td>Eldred C. Nelson</td>
<td>5/46</td>
</tr>
<tr>
<td>3</td>
<td>"Nuclear Physics"</td>
<td>R. R. Wilson</td>
<td>8/45</td>
</tr>
<tr>
<td>4</td>
<td>"Neutron Diffusion Theory"</td>
<td>George Placzek</td>
<td>2/45</td>
</tr>
<tr>
<td>5</td>
<td>"Critical Assemblies"</td>
<td>O. R. Frisch</td>
<td>12/45</td>
</tr>
<tr>
<td>6</td>
<td>"Efficiency"</td>
<td>V. F. Weisskopf</td>
<td>12/29/45</td>
</tr>
<tr>
<td>7</td>
<td>"Blast Wave"</td>
<td>Hans A. Bethe</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>"Chemistry of Uranium and Plutonium"</td>
<td>Joseph Kennedy</td>
<td>1/2/46</td>
</tr>
<tr>
<td>9</td>
<td>"Metallurgy"</td>
<td>Cyril S. Smith</td>
<td>1/7/46</td>
</tr>
<tr>
<td>10</td>
<td>"Explosives"</td>
<td>G. B. Kistiakowsky</td>
<td>1/46</td>
</tr>
<tr>
<td>11</td>
<td>"Implosion"</td>
<td>R. F. Bacher</td>
<td>1/46</td>
</tr>
<tr>
<td>12</td>
<td>"Theory of Implosion"</td>
<td>R. E. Peterls</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>"The Gun"</td>
<td>F. Birch</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>"Fuzes"</td>
<td>R. R. Brode</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>"Engineering and Delivery"</td>
<td>N. F. Ramsey</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>"Trinity"</td>
<td>K. T. Bainbridge</td>
<td></td>
</tr>
</tbody>
</table>

*See editor’s note, Appendix 7.
9.9 Only Volumes 1 and 2 have been considered completely declassifiable under the existing standards. However, a substantial portion of the information in some of the others will eventually be declassifiable and, with the exception of the weapon data, the remainder was to be distributable throughout the Manhattan Project for its general benefit.

9.10 Shortly after the initiation of the program, Dr. David Hawkins and Robert R. Davis were assigned the responsibilities of the Technical Series because of the imminent departure from Los Alamos of both Dr. Bethe and Dr. Inglis. When Dr. Hawkins left the project in the late summer of 1946, Robert R. Davis took over the detail as a group leader in D-Division.

9.11 The Technical Series compilation has proceeded at a slow rate since the time of its inception. Exceptional delays resulted because many individuals were reluctant or unable to continue obligations, taken on while at Los Alamos, after their departure. A more understandable difficulty was experienced by active project personnel who were faced with the problem of conducting an active technical program while writing about one accomplished in the past.

9.12 By January 1947, Volume 0 and 22 were completed and issued, and two-thirds of Volume 1 had been issued.
DESCRIPTION OF TECHNICAL SERIES

Title and brief description of each volume being written for the Los Alamos Technical Series. (See par. 87.)

<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Title and Description</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>"Relation Between the Various Activities of the Laboratory"</td>
<td>S. K. Allison</td>
</tr>
<tr>
<td></td>
<td>(A general survey of the work of the Los Alamos Laboratory during the war years, with particular emphasis upon the problems of the critical mass and of the efficiency. In addition to a discussion of the gun and implosion type bombs, the volume contains a section dealing with other methods of attaining the explosive release of nuclear energy.)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>"Experimental Techniques"</td>
<td>Darol K. Froman</td>
</tr>
<tr>
<td></td>
<td>(A description of the experimental physics equipment used by the Los Alamos Laboratory. The volume has three parts: the first dealing with electronics; the second with ionization chambers and counters; and the third with miscellaneous techniques used in obtaining physical measurements.)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>"Numerical Methods"</td>
<td>Eldred C. Nelson</td>
</tr>
<tr>
<td></td>
<td>(A survey of the methods used in performing numerical calculations of various types of equations by hand computation and with the use of International Business Machines.)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>"Nuclear Physics"</td>
<td>R. R. Wilson</td>
</tr>
<tr>
<td></td>
<td>(A comprehensive report of nuclear physics measurements made by the Los Alamos</td>
<td></td>
</tr>
<tr>
<td>Volume No.</td>
<td>Title and Description</td>
<td>Editor</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>IV</td>
<td>"Neutron Diffusion Theory"</td>
<td>George Placzek</td>
</tr>
<tr>
<td></td>
<td>(The theory of diffusion with and without a change in velocity, including a discussion of statistical fluctuations.)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>"Critical Assemblies"</td>
<td>O. R. Frisch</td>
</tr>
<tr>
<td></td>
<td>(A report of critical mass experiments made at Los Alamos with uranium-238 and plutonium assemblies for various tampers. A theoretical discussion is included.)</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>"Efficiency"</td>
<td>V. F. Weisskopf</td>
</tr>
<tr>
<td></td>
<td>(A theoretical method for calculating the energy release of a nuclear explosion.)</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>"Blast Wave"</td>
<td>Hans A. Bethe</td>
</tr>
<tr>
<td></td>
<td>(A study of blast wave phenomenon, both from a theoretical and an experimental point of view. Particular emphasis is placed upon the behavior of the blast wave in large explosions, and an effort has been made to interpret blast data from studies made at Trinity, Hiroshima and Nagasaki.)</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>"Chemistry of Uranium and Plutonium"</td>
<td>Joseph Kennedy</td>
</tr>
<tr>
<td></td>
<td>(A survey of the problems concerned with the chemical purification and recovery of uranium and plutonium, together with a discussion of the preparation of their various compounds and of the analytical methods used in their study.)</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Not assigned.</td>
<td></td>
</tr>
<tr>
<td>Volume No.</td>
<td>Title and Description</td>
<td>Editor</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>X</td>
<td>"Metallurgy"</td>
<td>Cyril S. Smith</td>
</tr>
<tr>
<td></td>
<td>(A report on the metallurgy of uranium, plutonium and all other metals fabricated by the CMR Division.)</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>"Explosives"</td>
<td>G. B. Kistiakowsky</td>
</tr>
<tr>
<td></td>
<td>(A survey of the experimental work done by the Los Alamos Laboratory on the behavior of explosives and on the techniques of explosive casting.)</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>"Implosion"</td>
<td>R. F. Bacher</td>
</tr>
<tr>
<td></td>
<td>(A report on the experimental implosion program from the early tests to the development of the Trinity bomb. The volume covers work done on polonium, radio-barium and radio-lanthanum.)</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>"Theory of Implosion"</td>
<td>R. E. Peierls</td>
</tr>
<tr>
<td></td>
<td>(A theoretical survey of the implosion process. The volume contains discussions of shock hydrodynamics, equations of state and various implosion designs.)</td>
<td></td>
</tr>
<tr>
<td>XXI</td>
<td>"The Gun"</td>
<td>F. Birch</td>
</tr>
<tr>
<td></td>
<td>(A survey of the experimental gun program from the early tests to the development of the Hiroshima bomb. This volume includes design specifications and a discussion of the interior ballistics of the gun.)</td>
<td></td>
</tr>
<tr>
<td>XXII</td>
<td>"Fuzes"</td>
<td>R. B. Brode</td>
</tr>
<tr>
<td></td>
<td>(A study of work done by the Los Alamos Laboratory in designing detonating fuze assemblies for the implosion and gun type bombs.)</td>
<td></td>
</tr>
</tbody>
</table>
XXIII "Engineering and Delivery" N. F. Ramsey

(The history of Project "A" together with a discussion of engineering problems encountered in the delivery program. Particular attention has been given to the mechanical design and assembly of the Model 1561 implosion bomb.)

XIV "Trinity" K. T. Bainbridge

(A complete report on the 100 ton TNT calibration and rehearsal shot and the July 16, 1945 atomic bomb test at the Alamogordo Air Base. The volume includes both experimental and theoretical discussions of the various phases of the test. A large appendix contains all pertinent Trinity memoranda and all LA and LAMS reports concerning the Trinity explosion.)
SECTION 3
December 31, 1947

TO: All Division Leaders

FROM: R. J. Davis

SUBJECT: THE LOS ALAMOS TECHNICAL SERIES

REFERENCE: LAB-6-TS

This memorandum is intended as a report to the various divisions of the laboratory summarizing the present condition of the Los Alamos Technical Series. For the information of those who were not in some manner involved in the early planning of this work, a brief history of the Technical Series is presented in the following, together with descriptive paragraphs and visual statistics for each of the several volumes which are now available for distribution and for those which are forthcoming.

1. The Origin and Subsequent History of the Los Alamos Technical Series.

In conformity with the documentation activities of other installations connected with the Manhattan Project, a series of discussions was initiated during the summer of 1946 by several members of the Los Alamos laboratory relative to the writing and issuing of a comprehensive survey of the wartime accomplishments of the laboratory. A list of seventeen volume titles was compiled which distributed the subject matter as evenly as was thought to be practicable. Originally, it was contemplated that the work should be patterned after the Handbuch der Physik and for a time the title, The Los Alamos Handbook, was in fact used; however, it was felt that the word "handbook" was misleading and it was therefore abandoned in favor of "encyclopedia", which was intended to describe the comprehensive nature of the work. Finally, because "encyclopedia" incorrectly implied an alphabetical arrangement of material, it was agreed that the compilation should be known as The Los Alamos Technical Series.

In the original listing of volumes for the "Handbook", one volume was considered sufficient to contain all engineering information, including a section on fusing. It was later decided to split the volume into two sections: one dealing with the fusing program, the other with the general engineering and delivery program, and to issue each as a separate volume. This raised the total number of volumes to eighteen. It again became seventeen upon a decision to eliminate the volume dealing with miscellaneous chemistry (which had by this time been designated as Volume IX) and to distribute its material among various other volumes. Since this occurred after the writing was well underway, no attempt was made to revise the outline other than to delete all references to Volume IX.

During the early period, moreover, the original ordering of volume titles underwent considerable juggling, and in late August of 1946 a final sequence was adopted which, in retrospect, might seem peculiar to anyone unfamiliar with opinions commonly held by laboratory personnel at that time. The reasons for such concern with the order in which volumes were to appear

* See early memorandum appended to this report.
had to do with a prevalent notion, that it would prove possible simply to obtain security releases for a large number of volumes and have them published by a commercial publisher, hence. A programmatic history of the laboratory was to be written by S. K. Allison, and while it was not anticipated that this work might be declassified, it was recognized that it rightly should precede the other volumes as an introduction to the whole; it therefore was given the volume number "0". Volumes I through XIII were considered possibly or even probably declassifiable, and therefore were listed in the order in which they might be released for publication. The last four volumes were felt to be in a more doubtful category, and since it seemed that they might never be released, they were given the numbers XIV through XXIV. A blank space of seven numbers, XV through XX, was left to provide space for any additional volumes which might be contemplated.

During the months which followed, it became increasingly apparent that early estimates of the quantity of material which might be published were considerably in error since only a small portion of the total series could be released under the officially approved declassification policy. In addition to the obvious miscalculation on the part of the Series planners, this was a result of the quite general feeling of individual authors and editors that the writing of a complete and detailed survey of the laboratory's work was of paramount importance, that questions concerning eventual declassification and publication necessarily were matters of secondary consideration. Consequently, as the writing program progressed, the Series assumed more and more the character of a highly classified compilation of working handbooks.

As matters now stand, ten of the seventeen volumes of the Series have been issued, and of these only one (Volume I) has been prepared in such a manner that it has seemed possible, without major revision, to submit it for declassification. Of the seven unrevised volumes, only one (Volume II) seems promising as a possibly declassifiable report, although in this case it is probable that considerable revision will be necessary.

2. Descriptive Survey of Volumes Issued as of December 31, 1947

Volume O, "Relation Between the Various Activities of the Laboratory"
Written by S. K. Allison, 119 pages.

Chapter 1 through 4 LA-1008

(A general survey of the work of the Los Alamos Laboratory during the war years, with particular emphasis upon the problem of the critical mass and of the efficiency. In addition to a discussion of the gun and implosion type bombs, the volume contains a section dealing with other methods of attaining the explosive release of nuclear energy.)

Volume I, "Experimental Techniques"
Edited by E. K. Proven, 1318 pages.

Chapter 1 through 3 LA-1001
Chapter 4 through 7 LA-1002
Chapter 8 through 12 LA-1003
Chapter 13 through 16 LA-1004
Chapter 17 through 19 LA-1005
Chapter 20 through 24 LA-1006
Chapter 25 through 32 LA-1007
Chapter 33 through 35 LA-1008
(A description of the experimental physics equipment used by the Los Alamos Laboratory. The volume has three parts: The first dealing with electronics; the second with ionization chambers and counters; and the third with miscellaneous techniques used in obtaining physical measurements.)

Volume III, "Nuclear Physics"
Edited by R. R. Wilson, 446 pages.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LA-1009</th>
<th>LA-1010</th>
<th>LA-1011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 through 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 through 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A comprehensive report of nuclear physics measurements made by the Los Alamos Laboratory, together with theoretical evaluations of results and a detailed discussion of the fission process.)

Volume IV, "Critical Assemblies"
Edited by O. H. Frisch, 373 pages.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LA-1055</th>
<th>LA-1056</th>
<th>LA-1057</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 through 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 through 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A report of critical mass experiments made at Los Alamos with uranium-235 and plutonium assemblies for various tampers. A theoretical discussion is included.)

Volume VI, "Efficiency"
Edited by V. F. Weisskopf, 364 pages.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LA-1026</th>
<th>LA-1029</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 through 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A theoretical method for calculating the energy release of a nuclear explosion.)

Volume VII, "Blast Wave"
Edited by Hans A. Bethe, 797 pages.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LA-1020</th>
<th>LA-1021</th>
<th>LA-1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 through 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 through 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 through 19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A study of blast wave phenomenon, both from a theoretical and an experimental point of view. Particular emphasis is placed upon the behavior of the blast wave in large explosions, and an effort has been made to interpret blast data from studies made at Trinity, Hiroshima and Nagasaki.)

Volume VIII, "Chemistry of Uranium and Plutonium"
Edited by Joseph Kennedy, 579 pages.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LA-1086</th>
<th>LA-1014</th>
<th>LA-1018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 through 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 through 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(A survey of the problems concerned with the chemical purification and recovery of uranium and plutonium, together with a discussion of the preparation of their various compounds and of the analytical methods used in their study.)

Volume XI, "The Gun"
Edited by P. Birch, 410 pages.

Chapter 1 through 7 LA-1007
Appendix LA-1006

(A survey of the experimental gun program from the early tests to the development of the Hiroshima bomb. This volume includes design specifications and a discussion of the interior ballistics of the gun.)

Volume XXII, "Fuses"
Edited by R. B. Brode, 174 pages.

Chapter 1 through 8 app. LA-1005

(A study of work done by the Los Alamos Laboratory in designing detonating fuse assemblies for the implosion and gun type bombs.)

Volume XIV, "Trinity"
Edited by K. T. Bainbridge, 1825 pages.

Chapter 1 through 11 LA-1012
Appendix 1 through 19 LA-1013
Appendix 20 LA-1014
Appendix 21 through 30 LA-1015
Appendix 31 through 39 LA-1016
Appendix 40 through 49 LA-1017
Appendix 50 through 54 LA-1018
Appendix 55 through 71 LA-1027

(A complete report on the 100 ton TNT calibration and rehearsal shot and the July 15, 1945 atomic bomb test at the Alamogordo Air Base. The volume includes both experimental and theoretical discussions of the various phases of the test. A large appendix contains all pertinent Trinity memoranda and all LA and LAMS reports concerning the Trinity explosion.)

3. Descriptive Survey of Unissued Volumes

Volume II, "Numerical Methods"
Edited by Eldred C. Nelson

(A survey of the methods used in performing numerical calculations of various types of equations by hand computation and with the use of International Business Machines.)

Volume IV, "Neutron Diffusion Theory"
Edited by George Placzek

(The theory of diffusion with and without a change in velocity, including a discussion of statistical fluctuations.)

Volume X, "Metallurgy"
Edited by Cyril S. Smith.
(A report on the metallurgy of uranium, plutonium and all other metals fabricated by the CMR Division.)

Volume XI, "Explosives"
Edited by G. B. Kistiakowsky

(A survey of the experimental work done by the Los Alamos Laboratory on the behavior of explosives and on the techniques of explosive casting.)

Volume XII, "Implosion"
Edited by R. P. Bacher

(A report on the experimental implosion program from the early tests to the development of the Trinity bomb. The volume covers work done on polonium, radio-beryllium and radio-lanthanum.)

Volume XIII, "Theory of Implosion"
Edited by N. E. Peierls

(A theoretical survey of the implosion process. The volume contains discussions of shock hydrodynamics, equations of state and various implosion designs.)

Volume XIV, "Engineering and Delivery"
Edited by M. F. Ramsey

(The history of Project "A" together with a discussion of engineering problems encountered in the delivery program. Particular attention has been given to the mechanical design and assembly of the Model 1661 implosion bomb.)
INTER-OFICE MEMORANDUM

August 21, 1945

TO: All Division Leaders and All Group Leaders

FROM: E. A. Bethe

SUBJECT: IA HANDBOOK

The following is a tentative plan for the comprehensive IA Handbook. Each of the volumes here proposed should presumably have an editor and contain of the order of five to ten contributions describing various phases of the work. I should expect this list to be incomplete and to have too much emphasis on physics and particularly theoretical physics. I should therefore like to have suggestions of additional topics and also of suitable editors for the various volumes. In some cases, the names would be obvious.

In most instances, I believe it is appropriate to combine experiments and related theory in the same volume. There are some exceptions, such as Volumes 3 and 16.

To give an example, I have sketched the possible subdivisions of Volume 2. Various volumes will obviously have very different length; some, like Volume 17, will be very short while others, like Volume 12, may possibly require splitting into several volumes. I am anxious to get your reaction and criticism on this proposal as soon as possible.

LIST OF VOLUMES

1. General Problems
 To discuss the connection between the various activities of the laboratory.

2. Differential Nuclear Physics
 Cross-sections and other constants, relation with the theory of the compound nucleus.

3. Diffusion Theory
 This might be split into two parts, the first containing generally applicable methods which could be published almost without restriction, the second, special methods such as the theory for many neutron velocities.

4. Critical Assemblies
 Mainly experimental: to describe the approach to critical, the behavior of the critical assembly itself, and its use (such as the power water boiler).
5. Efficiency

Theory of the nuclear explosion, including radiation.

6. Gun

To include also the fabrication of materials for the gun.

7. Engineering

Fuses, detonators, outer case, ballistics, etc.

8. Chemistry of U and Pu.

10. Other Chemistry

Such as, Fe, preparation of foils, protective coatings, etc. (I am assuming that the metallurgical problems not connected with U and Pu can be treated in connection with the purpose for which they were solved such as the WC metallurgy in connection with the gun. It may, however, be preferable to have a separate volume on non-plutonium metallurgy.)

11. Explosives

Techniques and properties of explosives, castings.

12. Detonation and Shock Waves, Equations of State

Theory of the equation of state of explosives and of solids; relevant experiments. Theory and experiments on detonation and shock waves especially the interaction of several waves.

13. Implosion

Experimental methods to observe implosion, i.e., work of Division G and Section I-1. Theory of implosion.

14. Blast Wave

Theory of the blast wave from the gadget as compared to TNT explosion. Measurements at Trinity and on combat drops.

15. Trinity Test

16. Experimental Physics methods

17. Numerical Methods
2. Differential Nuclear Physics

Cross-sections at High Energy
Cross-sections velocity selector

Spontaneous Fission
Scattering
Evaluation of Scattering
Relation of results with General Nuclear Theory

H. A. BETHE

HAB: jsh
To All Division and Group Leaders

FROM H. A. Bethe and D. R. Inglis

SUBJECT LOS ALAMOS ENCYCLOPEDIA

August 28, 1945

The plans for the comprehensive books on the work of this project have somewhat progressed. It was suggested not to call this a "Handbook" because this title would be misleading.

The arrangement of the volumes has been changed considerably from the first proposal as you will see from the list below. It has been suggested to put the volumes approximately in the order in which they might be released for publication, at least as far as this order does not conflict with the logical connection of the volumes. Several volumes may never be released and hence the purpose of recording the work of the project for future use. To leave flexibility in the arrangement, these volumes have been numbered beginning with "21".

It is our opinion that this encyclopedia should be comprehensive and that the contributions should be so written that the reader gets a complete account of the important facts without consulting separate reports. For details, references to separate reports should be made and it would be helpful at the end of each article to have a bibliography of all IA reports on the subject. The encyclopedia articles should contain tables and figures showing the relevant data, drawings of the important apparatus, etc. In many cases, these may be taken from reports previously issued.

The purpose of this encyclopedia is two-fold. It is to make available to scientists at large the results and methods developed here and it is also to keep on record the techniques of making a nuclear bomb, to be useful to our prospective successors.

We have asked one or two men to take charge of each individual volume. The volume editors have been asked to prepare a list of the chapters to be included in their volume and of the prospective authors for each chapter. We have asked that these outlines come to our hands by September 4. You may, therefore, be approached by the editor of the volume containing your subject in the next few days with the request that you write an article on your subject. We should like to ask your cooperation in this because we believe it important that this comprehensive account of our work be written and be reasonably complete.

Assurance has been requested from the editor of the PHYSICAL REVIEW that publication of material in this book will not preclude its publication in the PHYSICAL REVIEW. We expect, in any case, that articles which are contributed both to the PHYSICAL REVIEW and to this book (probably in somewhat different form) would very likely appear in the PHYSICAL REVIEW before the IA encyclopedia could come out. To believe that similar agreements should
be obtained from other journals in which members of the laboratory would contemplate publishing their results if and when security regulations permit. Suggestions of journals with which such an agreement is desired would be welcome.

We have set as a tentative goal a completion date of January 1, 1946. This date was chosen because it was our opinion that the staff of the laboratory would be reasonably complete up to that time. Obviously, some of the contributions will be longer and will take longer to write than others so that we can not hope to have all of them complete at the same time.

It is our belief that reasonable priority should be given to writing those articles and that in general they should take precedence over new research but should not interfere too much with production requirements.

We are planning to issue a memorandum containing the complete list of chapters as soon as this is available. However, we hope that the writing of the individual articles can be started before the plan of the entire work is completed. Concerning individual volumes, it has been decided to omit the volume on the Trinity test whose material might be included in the volume on the blast wave, the efficiency, and the nuclear physics volume. Some volumes have been combined in different ways especially those connected with explosives and implosion; other volumes have been split. In a few cases, it has not yet been possible to secure definitely a volume editor.
LIST OF VOLUMES

0. Relation between the Various Activities of the Laboratory (Allison)

1. Experimental Physics Equipment (Pronin). A memorandum on this volume was sent to you by Dr. Pronin (previously Volume 16).

2. Numerical Methods (Nelson). IBM methods for solving differential equations and for other calculations, methods for numerical integration by hand, integration along characteristics, etc.

5. Critical Assemblies (O. Frisch). All critical assemblies made at Los Alamos, probably with elementary theory.

8. Chemistry of U and Pu (Kennedy)

9. Chemistry of other Materials (Dodson). All service chemistry such as preparation of initiators, of foils, and various materials required in other parts of the laboratory, etc.

10. Metallurgy (C. S. Smith). Metallurgy of U, Pu, and all other metals fabricated by the Metallurgy Division (the fabrication of such materials will not be included in the volume describing their use.)

11. Explosives and Detonation Waves (Kistiakowsky). Experimental work on the property of explosives and techniques of explosives casting.

12. Implosion (Backer). Experimental observations of implosion such as velocities and densities.

This volume should obviously come at the beginning. On the other hand, it is presumably not possible to release it in the near future. We therefore did not wish to give it the number "1".

† These persons are proposed for volume editors but could not yet be approached.

21. Gun (Birch). (This is the first of the volumes which are mainly for the record and will presumably not be released.)

22. Fuses (Brode).

23. Engineering and Delivery. (Volume editor not yet determined). Firing circuit, outer case, ballistics, etc.
TO: VOLUME EDITORS AND AUTHORS IN THE LOS ALAMOS TECHNICAL SERIES

FROM: H. Bethe and D. Inglis

SUBJECT: Minutes of Meeting held Friday, October 12, 1945

A meeting of the volume editors was held Friday, October 12. On several subjects the opinions of the various editors seemed to differ considerably. I shall try, in the following, to summarize the opinions presented, to record those matters which were definitely decided, and also to bring to your attention some developments not mentioned in the meeting.

(1) The name of the work is to be changed from "Los Alamos Encyclopedia" to "Los Alamos Technical Series." This seems to be indicated also by the fact that probably only a few volumes can be released for publication in the near future.

(2) It was generally agreed that the writing of the volumes, with the exception of volumes 1 and 2, should proceed without regard to the problem of future declassification. Every volume should be written such as to present the material in the most coherent and scientifically appropriate way. An exception should be made for volumes 1 and 2, which we hope to get declassified before everything else. In these two volumes care should be taken to avoid reference to such things as the values of nuclear cross-sections, the implosion, or similar subjects.

(3) Every manuscript that is released for publication must be cleared, both by security and by Major Smith's Patent Office. The latter clearance is required by our contract, which provides that the government has a right to take out patents on all inventions made on this project. It is, therefore, strongly recommended that every chapter of volumes 1 and 2 be submitted as soon as it is finished to Major Smith and to the Security Office, for clearance.

(4) The number of copies to be made for the use of the project itself before publication was discussed. It was suggested by various people in the meeting that between 5 and 100 copies be made for the project. It seems to me that in order to be useful at least 10 copies should be made of every volume, except those which may have to be classified "top secret." It seems most reasonable to let the number of copies vary from one volume to another but it is highly desirable that a conclusion on the number of copies be reached before any given volume is reproduced in order to decide on the method of reproduction for the text (mimeograph or hectograph) and for the illustrations.

(5) It is requested that every volume editor submit an estimate of the length of his volume in terms of number of typewritten pages or of words. It seems desirable that the approximate length of the individual chapters be agreed upon by the chapter authors and volume editors. Even more desirable is an estimate of number of illustrations - both full and half page.
The cooperation with the Chicago Metallurgical Laboratory was discussed. It was the general feeling that the volume editors most concerned should go to Chicago and discuss the problem with the corresponding volume editors there. The purpose of these discussions would be to avoid, as much as possible, duplication between the two series; but some duplication will be unavoidable in the interest of making each series a coherent whole. It was felt that we should not attempt to write joint volumes with the Chicago Laboratory but that we should offer, in special cases, to let members of our laboratory write chapters for the Chicago series, and that likewise we should be entitled to ask members of the Chicago Laboratory to contribute to our series, if this is indicated.

Inquiries have been made from four publishers of whom two, McGraw-Hill and Interscience Publishers, showed definite interest in publishing the series when released by security; while the other two, Macmillan Company and Prentice-Hall, seemed more doubtful. It is proposed that the first two be considered in more detail for our publication. It is planned to have Cpl. Warshaw travel East to negotiate with the publishers. Cpl. Warshaw has had some experience in publication work.

It was the general opinion that royalties should be waived for the publication. The two publishers mentioned above both indicated that they would reduce the price of the volume accordingly, if royalties were waived.

Considerable discussion took place on the problem of references. The prevalent opinion was that references should be made to the names of all people who participated in any particular experiment or development. It was suggested that each reference be given a number, and that only the number be quoted in the text, while the names belonging to the reference would be found at the end of the chapter. It was the majority opinion that rather too many than too few names should be included under each reference.

In addition to these references on specific subjects, the need was felt for references to large groups of people, such as the groups engaged in casting of H.E. charges. In this case it was suggested to have a reference attached to the entire chapter and to name everybody at the end of the chapter (or of the volume) who was concerned in that particular work.

Disagreement existed as to the extent to which each of these two types of references should be used. It is my opinion that they should both be used at the discretion of the author of the chapter and the volume editor.

The format of the final publication was discussed. Arguments were given both in favor of large size (Physical Review) and of normal book size; also, of one column and of two columns in the case of large format. There was some sentiment that not all volumes need to have the same format. For the time being figures should probably be prepared so as to fit our own mimeographed editions; but in such a way as to make redrawing unnecessary for future publication in book form when this is not too much extra work. Cpl. Warshaw should be consulted on this question.

Several authors have expressed the desire to publish some of their results in scientific journals in addition to the Los Alamos Series. We have assurance from the Physical Review that they will accept papers even if they duplicate material in the Los Alamos Series. They requested, however, that the material be sent to them not at all care, if possible. They also pointed out that they have only limited funds for publication so that if they had an
excess amount of material for publication, they would favor unpublished material as compared with that published in a series. In general, however, authors can be confident that their publication in the Physical Review will not be prejudiced by writing on the same subject in the series.

Attempts will be made to get similar assurances from other scientific journals.
SECTION 4
Volume 0

Volume 1

Part 1, Section A (Chapters 1-3) LA-1001
Section B (Chapters 4-7) LA-1002

Part 2, Section A (Chapters 8-12) LA-1038
Section B (Chapters 13-16) LA-1004R

Part 3, Section A (Chapters 17-18) LA-1030
Section B (Chapters 19-20) LA-1031
Section C (Chapters 21-23) LA-1032

Volume 2

Part 1, (Chapters 1-5) LA-1057
Part 2 (Chapters 6-8) LA-1058

Volume 3

Section A (Chapters 1-3) LA-1009
Section B (Chapters 4-6) LA-1010
Section C (Chapters 7-9) LA-1011

Volume 4

Not Yet Issued

Volume 5

Part 1 (Chapters 1-3) LA-1033
Part 2 (Chapters 4) LA-1034
Part 3 (Chapters 5-7) LA-1035
Part 4 (Chapters 8-10) LA-1036

Volume 6

Part 1 (Chapters 1-4) LA-1028
Part 2 (Chapters 5-6) La-1029

Volume 7

Part 1 (Chapters 1-4) La-1020
Part 2 (Chapters 5-10) La-1021
Part 3 (Chapters 11-16) La-1022
Part 4 (Chapters 17-19) La-1023

Volume 8

Section A (Chapters 1-4) La-1016
Section B (Chapters 5-7) La-1017
Section C (Chapters 8-9) La-1018

Volume 10

(Chapter 1) Not Yet Issued
(Chapter 2) Li-1223
(Chapter 3) Li-1236
(Chapter 4) Li-1355
(Chapter 5) Li-1359
(Chapter 6) Li-135

Volume 11

Part 1 (Chapters 1-4) La-1043
Part 2 (Chapters 1-3) La-1044
(Chapters 4-5) La-1045
(Chapters 6-8) La-1046
(Chapters 9-11) La-1047
Part 3 (Chapters 1-2) Not Yet Issued
(Chapters 3-4) La-1049
(Chapters 5-6) La-1050
(Chapters 7-8) Not Yet Issued
<table>
<thead>
<tr>
<th>Volume 12</th>
<th>Not Yet Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1 (Chapter 1-3)</td>
<td>LA-1052</td>
</tr>
<tr>
<td>(Chapters 4-5)</td>
<td>LA-1053</td>
</tr>
<tr>
<td>(Chapters 6-8)</td>
<td>LA-1054</td>
</tr>
<tr>
<td>(Chapters 9-11)</td>
<td>LA-1055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1 (Chapters 1-3)</td>
</tr>
<tr>
<td>Part 2 (Chapters 4-5)</td>
</tr>
<tr>
<td>Part 3 (Chapters 6)</td>
</tr>
<tr>
<td>Part 4 (Chapters 7-9)</td>
</tr>
<tr>
<td>Part 5 (Chapter 10)</td>
</tr>
<tr>
<td>Part 6 (Chapters 11-16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A</td>
</tr>
<tr>
<td>Section B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume 22</th>
<th>LA-1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 23</td>
<td>LA-1151</td>
</tr>
<tr>
<td>Volume 24</td>
<td>LA-1012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Appendices 1-19)</th>
<th>LA-1013</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Appendix 20)</td>
<td>LA-1014</td>
</tr>
<tr>
<td>(Appendices 21-30)</td>
<td>LA-1015</td>
</tr>
<tr>
<td>(Appendices 31-40)</td>
<td>LA-1019</td>
</tr>
<tr>
<td>(Appendices 41-48)</td>
<td>LA-1024</td>
</tr>
<tr>
<td>(Appendix 49)</td>
<td>LA-1025</td>
</tr>
<tr>
<td>(Appendices 50-54)</td>
<td>LA-1026</td>
</tr>
<tr>
<td>(Appendices 55-72)</td>
<td>LA-1027</td>
</tr>
<tr>
<td>Volume Number</td>
<td>Volume Editor</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0</td>
<td>Allison</td>
</tr>
<tr>
<td>1</td>
<td>Froman</td>
</tr>
<tr>
<td>2</td>
<td>Nelson</td>
</tr>
<tr>
<td>3</td>
<td>Wilson</td>
</tr>
<tr>
<td>4</td>
<td>Placzek</td>
</tr>
<tr>
<td>5</td>
<td>Frisch</td>
</tr>
<tr>
<td>6</td>
<td>Weisskopf</td>
</tr>
<tr>
<td>7</td>
<td>Bethe</td>
</tr>
<tr>
<td>8</td>
<td>Kennedy</td>
</tr>
<tr>
<td>10</td>
<td>Smith</td>
</tr>
<tr>
<td>11</td>
<td>Kistiaikowsky</td>
</tr>
<tr>
<td>12</td>
<td>Bacher</td>
</tr>
<tr>
<td>13</td>
<td>Peierls</td>
</tr>
<tr>
<td>21</td>
<td>Birch</td>
</tr>
<tr>
<td>22</td>
<td>Brode</td>
</tr>
<tr>
<td>23</td>
<td>Ramsey</td>
</tr>
<tr>
<td>24</td>
<td>Bainbridge</td>
</tr>
</tbody>
</table>
OUTLINE OF THE LOS ALAMOS TECHNICAL SERIES

VOLUME 0

Relation Between the Various Activities of the Laboratory

La-1CC6 Secret

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Author</th>
<th>Chapter Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Allison</td>
<td>Contents and Forward</td>
</tr>
<tr>
<td>1</td>
<td>Allison</td>
<td>The Problem of the Critical Mass</td>
</tr>
<tr>
<td>2</td>
<td>Allison</td>
<td>The Problem of Efficiency</td>
</tr>
<tr>
<td>3</td>
<td>Allison</td>
<td>Other Methods of Attaining the Explosive Release of Nuclear Energy</td>
</tr>
<tr>
<td>4</td>
<td>Allison</td>
<td>The Fission Bomb as a Military Weapon</td>
</tr>
</tbody>
</table>

VOLUME 1

Experimental Techniques

Preface (Froman)

Part I - Electronic Circuits

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Author</th>
<th>Chapter Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elmore, Sands</td>
<td>Components and Construction Practice</td>
</tr>
<tr>
<td>2</td>
<td>Elmore, Sands</td>
<td>Circuit Elements</td>
</tr>
<tr>
<td>3</td>
<td>Elmore, Sands</td>
<td>Voltage Amplifiers</td>
</tr>
<tr>
<td>4</td>
<td>Elmore, Sands</td>
<td>Electronic Counters</td>
</tr>
<tr>
<td>5</td>
<td>Elmore, Sands</td>
<td>Oscillographs and Associated Equipment</td>
</tr>
<tr>
<td>6</td>
<td>Elmore, Sands</td>
<td>Test and Calibration Equipment</td>
</tr>
<tr>
<td>7</td>
<td>Elmore, Sands</td>
<td>Power Supplies and Control Circuits</td>
</tr>
</tbody>
</table>

Part II - Ionization Chambers and Counters and Associated Techniques

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Author</th>
<th>Chapter Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Rossi, Staub</td>
<td>Behavior of Free Electrons and Ions in Gases</td>
</tr>
<tr>
<td>9</td>
<td>Rossi, Staub</td>
<td>Operation of Ionization Chambers with Constant Ionization</td>
</tr>
<tr>
<td>10</td>
<td>Rossi, Staub</td>
<td>Operation of Ionization Chambers with Variable Ionization</td>
</tr>
<tr>
<td>Chapter No.</td>
<td>Chapter Author</td>
<td>Chapter Title</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Rossi, Staub</td>
<td>Ionization Chambers and Counters and Associated Techniques (continued)</td>
</tr>
<tr>
<td>12</td>
<td>Rossi, Staub</td>
<td>Gas Multiplication</td>
</tr>
<tr>
<td>13</td>
<td>Rossi, Staub</td>
<td>Beta-Ray, γ-Ray, and X-Ray Detectors</td>
</tr>
<tr>
<td>14</td>
<td>Rossi, Staub</td>
<td>Alpha Particle Detectors</td>
</tr>
<tr>
<td>15</td>
<td>Rossi, Staub</td>
<td>Detectors for Neutron Recoils</td>
</tr>
<tr>
<td>16</td>
<td>Rossi, Staub</td>
<td>Detectors of n-α and n-p Reactions</td>
</tr>
<tr>
<td>Appendix</td>
<td>Rossi, Staub</td>
<td>Fission Detectors</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>Rossi, Staub</td>
<td>Appendix to Part II</td>
</tr>
</tbody>
</table>

VOLUME II

Numerical Methods

IBM Volume Editor (Nelson) 1057

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Author</th>
<th>Chapter Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBM Staff</td>
<td>Description of the IBM Machines</td>
</tr>
<tr>
<td>2</td>
<td>Flanders, Whitman</td>
<td>Interpolation</td>
</tr>
<tr>
<td></td>
<td>Hamming</td>
<td>A. General Interpolation Formulae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Interpolation on IBM Machines</td>
</tr>
<tr>
<td>3</td>
<td>Flanders, Whitman</td>
<td>Numerical Integration</td>
</tr>
<tr>
<td></td>
<td>Hamming</td>
<td>A. General Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Numerical Integration on IBM Machines</td>
</tr>
</tbody>
</table>
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

Volume II (continued)

4. Flanders, Keller
 Determinants and Matrices
 A. Numerical Computations Involving Determinants
 B. Matrix Multiplication on IBM Machines

5. Flander, Whitman, Ashkin, Feynman, Hamming
 Numerical Solution of Ordinary Differential Equations
 A. General Methods
 B. Numerical Method for Integrating Half A Time
 C. An Iterative Method for IBM Machines

6. Skyrme, Nelson, Peierls
 Numerical Solution of Partial Differential Equations
 A. Introduction and Equations
 B. Boundary Conditions
 C. Integration Along Characteristics
 D. Solution of the Hydrodynamic Equation on IBM Machines
 E. Von Neumann's Method of Treating Shocks

7. Goldberg, Kemery
 Solution of the Time Dependent Diffusion Equation

8. Flanders, Whitman
 Miscellaneous Problems in Numerical Calculations

VOLUME III

Nuclear Physics

Volume Editor (R. R. Wilson)

1. Wilson
 Introduction

2. Manley, Barschall
 Fast Neutron Scattering
 Fission and Capture Cross Sections for
 Fast Neutron Absorption and Fission Cross Sections
 Fast Neutrons.

3. Williams, J. H.
 LA-1010 Secr.
 Slow Neutron Absorption and Fission Cross Sections

4. McDaniel
 Experiments Related to the Fission Process

5. Inglis
 Spontaneous Nuclear Fission

6. Inglis
 Interpretation of the Fission Process

7. Chapter 6 - The Theory of Neutron Reactions with Heavy Nuclei. V. Wieskopf.
 Dec.

 E. Bretcher and E. Konopinski.
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME IV

Neutron Diffusion Theory

Volume Editor (Placzek).

1

One Velocity Theory: I General Principles
A. Streaming with Absorption
B. Transport Equation and Integral Equations
C. Elementary Diffusion Theory
D. Asymptotic Solutions of Transport Equation. Determination of Boundary Conditions in Elementary Cases
E. Greens Function for Infinite Medium

2

Plane Standard Problems
A. General Theorems for Plane Problems
B. Milne Problem
C. Inhomogeneous Milne Equation
D. Two Adjoining Media
E. Laminated Media

Approximation Methods
A. Variational Methods
B. Iteration Methods
C. Harmonics Methods
D. Serber Method

4

Spherical Problems
A. Bare Sphere
B. Sphere in Tamper
C. Absorbing Sphere in Medium
D. Hole Effects
E. Multi-medium Problems

5

Other Shapes
A. Cylinders
B. Cut Cylinders
C. Odd Shapes
D. Perturbation Problems

VOLUME V

Volume Editor (O. R. Frisch)

Critical Assemblies

1 Frisch Introduction
2 Frisch Theory
3 Hanson, Anderson Neutron Multiplication in Subcritical Spheres
4 King Waterboilers
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME V (continued)

5 Holloway Hydrides
6 Baker *25* Metal
7 Slotin *49* Metal and Composite Spheres
8 Baker Time Scale Experiments
9 Frisch Dragon
10 Field Nuclear Safety

VOLUME VI

Volume Editor (V. Weisskopf)

Efficiency

1 Weisskopf Introduction
2 Bethe Efficiency for Small Sub-critical Gadgets
3 Feynman Calculation of Efficiency According to Bethe and Feynman
4 Ulam, Smith, Cohen, Bowers General Efficiency Calculations
5 Weisskopf Problems of Instability and Turbulence
6 Marshak Effect of Radiation

VOLUME VII

Volume Editor (Bethe)

1 Bethe Introduction — Blast Wave
2 Von Neumann Taylor Solution. The Point Source
3 Fuchs, Peierls Equation of State $c = \frac{3}{2} \gamma$
4 Magee Radiation Phenomena in Air Blast and Gadget
5 Bethe Small f ~1
6 Fuchs Effect of Variable Density on the Propagation of the Blast Wave
7 Fuchs IBM Solution of the Blast Wave Problem.
8 Bethe, Fuchs Asymptotic Theory for Small Blast Pressure.
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME VII (continued)

9 Fuchs, L. 104
 Altitude

10 Reines, G. I. Taylor Bell of Fire

11 Reines Humidity and Cloud Formation

12 Penna, Fuchs Prediction of Blast Damage

13 Reines Underwater Explosion of a Nuclear Bomb

14 Shapiro Underwater Explosion of a Nuclear Gadget

15 Shapiro Gravity Waves Generated by Underwater and Surface Explosions in Shallow Water

16 Manley Blast Measurements

17 Mack Photographic Observations

18 Agnew Airborne Measurements

19 Fuchs Damage Results

20 Summary and Comparison

VOLUME VIII LA-1106

Volume Editor: Joe Kennedy

Chemistry of U and Pu

1 Kennedy Introduction

2 Wichers, Harmon Chemistry Purification of Pu

3 Walsh Chemical Purification of Pu

4 Garner Tetrafluoride and Other Dry Compounds of Pu

5 Pittman Special Reactions for Recovery of Pu

6 Duffield Plant for Routine Chemical Processing of Pu

7 Helmholz Chemical Problems of the Water Boiler

8 Potratz Analytical Methods for U, Pu and Associated Matter

9 Hinch Control Measures for Radioactive Hazards

Insert B Weissman, Perlman, Lipkin, Kolodney Protective Coatings
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME VIII (continued)

Insert C

Potraz, Nachtrieb
Special Analytical Procedures

VOLUME IX

Volume Editor (Cyril Smith, Chicago)

Metallurgy

1. Jette
Metallurgy of Plutonium

2. Marshall
Metallurgy of Uranium and U-235

3. Seybold
Tamper Materials LA-1236

4. Seybold
Tamper Materials LA-1255

5. Mullen
Refactories LA-1259

6. Kirby
Plastics

7. Lass
Boron LA-1254

8. Taub
Beryllium

9. Arnold
Miscellaneous Foundry Work

10. Kahl
Heat Treatment of Steel

11. Taub
Miscellaneous Metals

VOLUME XII

Volume Editor (G. B. Kistiakowsky)

Explosives

✓ Kistiakowsky
Preface to Chapter I

Intro. Chap. 2
Kistiakowsky
Explosives

Intro. Chap. 3
Kistiakowsky
The Operating Mechanism of Implosion

Intro. Chap. 4
Kistiakowsky
Organisational History

Part II Initiation of Detonation

Introduction
Kistiakowsky
Introduction LA-1044

1. Greisen
Asimultaneity Measuring Techniques

2. Greisen
Statistical Interpretation of Asimultaneity
Data
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME XI (continued)

Part IV The Making of Explosive Charges

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Ackermann</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carlson, Fearing</td>
</tr>
<tr>
<td>2</td>
<td>Gurinsky</td>
</tr>
<tr>
<td>3</td>
<td>Hopper, Stout</td>
</tr>
<tr>
<td>4</td>
<td>Henderson, Stout, A. Gurney</td>
</tr>
<tr>
<td>5</td>
<td>Ackerman, Wilder</td>
</tr>
<tr>
<td>6</td>
<td>L. W. Foster</td>
</tr>
<tr>
<td>7</td>
<td>C. F. Quest</td>
</tr>
<tr>
<td>8</td>
<td>W. A. Wilson</td>
</tr>
<tr>
<td>9</td>
<td>Tenney</td>
</tr>
<tr>
<td>10</td>
<td>Russell</td>
</tr>
<tr>
<td>11</td>
<td>Wilder, Schaffer</td>
</tr>
</tbody>
</table>

VOLUME XII

Volume Editor (Bacher)

Implosion

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Bacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Farratt, Tuck</td>
</tr>
<tr>
<td>2</td>
<td>Koeki</td>
</tr>
<tr>
<td>3</td>
<td>Linschits</td>
</tr>
<tr>
<td>4</td>
<td>Frohman, Graves</td>
</tr>
<tr>
<td>5</td>
<td>Fowler, Joseph</td>
</tr>
<tr>
<td>6</td>
<td>Rossi</td>
</tr>
<tr>
<td>7</td>
<td>Medderneyer, et al</td>
</tr>
<tr>
<td>8</td>
<td>Critchfield, Tuck, Johns</td>
</tr>
</tbody>
</table>

Physical Properties and Analysis of Some Explosives
Development of Casting Procedures
Low Density Slow Explosives
Explosive Charge Molds
Plant Design and Operation
The Casting of Full Scale Charges
The Casting of Small Scale Charges
The Machining of Castings
The X-Ray and Gamma Ray Examination of Charges
Physical Inspection of Castings
Assembly of Full Scale Charges
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME XII (continued)

9 Holloway Overall Design
10 Friedlander Radio-Barium, Radio-Lanthanum

VOLUME XIII
Volume Editor (Peierls)

Theory of Implosions

1 Bethe Introduction
2 Peierls Hydrodynamic Methods
3 Fuchs Reflection, Transmission, Interaction of Shock Waves, Free Surfaces
4 Roberts Stability of Shocks
5 Keller Equations of State
6 Fuchs, Skyrme Detonation Waves
7 Fuchs, Skyrme Effect of Detonation Waves on Solids
8 Keller Equations of State of High Explosives
9 Skyrme Reaction Zone
10 Fuchs Jets
11 Keller Convergent Detonation Waves
12 Christy Implosion of Solid Gadget
13 Christy, Roberts Acceleration of Shell Stability of Shell Choice of Geometry
14 Baroody, Christy Hollow and Levitated Core Gadget
15 Calkin Similarity Theory
16 Christy, Skyrme Miscellaneous Designs
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

UNCLASSIFIED

VOLUME XXI
Volume Editor (Birch)

<table>
<thead>
<tr>
<th>1</th>
<th>McMillan, Langer Birch</th>
<th>Early Gun Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wood</td>
<td>20 Millimeter Scale Experiments</td>
</tr>
<tr>
<td>3</td>
<td>Birch</td>
<td>25 Gun Assembly: Components Developments</td>
</tr>
<tr>
<td>4</td>
<td>Birch</td>
<td>Design and Tests as Airborne Bomb</td>
</tr>
<tr>
<td>5</td>
<td>Langer</td>
<td>Initiator</td>
</tr>
<tr>
<td>6</td>
<td>Schiff</td>
<td>Expected Performance</td>
</tr>
<tr>
<td>7</td>
<td>Birch</td>
<td>Details Concerning the Hiroshima Unit</td>
</tr>
<tr>
<td>Ins. A</td>
<td>Hirschfelder, Magee</td>
<td>Interior Ballistics</td>
</tr>
</tbody>
</table>

VOLUME XXII
Volume Editor (Brode)

<table>
<thead>
<tr>
<th>1</th>
<th>Brode</th>
<th>Philosophy of Fusing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Discussion of Alternative Devices</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Basic Components</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>The Fuse Unit</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Field Tests</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Destination and Combat</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Counter Measures</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Procurement, Production and Shipping</td>
</tr>
</tbody>
</table>

Appendix
Summary and Future Program
Personnel as of August, 1946
Reports on File
OUTLINE OF LOS ALAMOS TECHNICAL SERIES

VOLUME XXIII

Volume Editor (Ramsey)

<table>
<thead>
<tr>
<th>1</th>
<th>Ramsey</th>
<th>History in the U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A. H. Macen</td>
<td>Mechanical Design of Model 1561 Fat Man</td>
</tr>
<tr>
<td>4</td>
<td>V. A. Miller</td>
<td>Assembly of Model 1561 Fat Man</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S. H. Dike</td>
<td>Atomic Bomb Project Aircraft</td>
</tr>
<tr>
<td>7</td>
<td>Ramsey</td>
<td>History in Mariannas</td>
</tr>
</tbody>
</table>

VOLUME XXIV

Volume Editor (K. Bainbridge)

<table>
<thead>
<tr>
<th>Insert A</th>
<th>Sugarman</th>
<th>Radiochemical Determination of the Efficiency of Nuclear Explosions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bainbridge</td>
<td>Initial Preparations for the Test</td>
</tr>
<tr>
<td>2</td>
<td>Bainbridge</td>
<td>100 Ton TNT Calibration and Rehearsal Shot</td>
</tr>
<tr>
<td></td>
<td>Tolman</td>
<td>Report of First Trinity Test</td>
</tr>
<tr>
<td></td>
<td>Bainbridge</td>
<td>Post 100 Ton Suggestions for Improved Facilities</td>
</tr>
<tr>
<td>3</td>
<td>Bainbridge</td>
<td>Preparations for the July 16 Test</td>
</tr>
<tr>
<td>4</td>
<td>Bainbridge</td>
<td>Final Preparations for Rehearsals and Test</td>
</tr>
<tr>
<td>5</td>
<td>Bainbridge</td>
<td>Trinity Schedule Assembly Runs</td>
</tr>
<tr>
<td>Warren, Hempelmen</td>
<td></td>
<td>Directions for Personnel at Base Camp at Time of Shot</td>
</tr>
<tr>
<td>Hempelmen</td>
<td></td>
<td>Health & Monitoring Organizations & Preparations.</td>
</tr>
<tr>
<td>Schaifer</td>
<td></td>
<td>Work Preceding and Including Assembly at Trinity</td>
</tr>
<tr>
<td>6</td>
<td>Bradbury</td>
<td>Trinity Hot Run</td>
</tr>
<tr>
<td>Weisskopf</td>
<td></td>
<td>The Radial Distribution of Gamma-Ray, Neutron and Heat Irradiation in the July 16, 1945 Test</td>
</tr>
<tr>
<td>Page</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Wilson</td>
<td>Summary of Physics Measurements</td>
</tr>
<tr>
<td>8</td>
<td>Manley</td>
<td>Summary of Mechanical Effects</td>
</tr>
<tr>
<td>9</td>
<td>Mack</td>
<td>Summary of Photographic and Spectrographic Measurements</td>
</tr>
<tr>
<td>10</td>
<td>Bainbridge</td>
<td>Summary of Trinity Experiments and Index of Reports</td>
</tr>
<tr>
<td>11</td>
<td>Bainbridge</td>
<td>Recommendations for Future Operations</td>
</tr>
</tbody>
</table>
SECTION 5
THE LOS ALAMOS TECHNICAL SERIES: A RECORD OF
THE PUBLICATIONS WHICH CONSTITUTE EACH VOLUME
OF THE SERIES

by

Judy Young

12/30/81

TO: __________________________

Attached is an updated sheet one for the brief descriptive information on the Los Alamos Technical Series. Information obtained from Leslie M. Redman indicates that there is a closer link between the 1953 Case, deHoffmann, and Placzek "Introduction to the Theory of Neutron Diffusion" and the never published volume IV of the Technical Series than could be determined from inspecting the above mentioned document. A note to this effect has been added to the bottom of this new sheet.

Judy Young
Report Library, MS 364
LOS ALAMOS TECHNICAL SERIES
A RECORD OF THE PUBLICATIONS WHICH CONSTITUTE EACH
VOLUME IN THE SERIES

Vol. 0
LA-100b chap. 1-4

Vol. I
LA-1001 (Pt. I, Sec. A) chap. 1-3
LA-1002 (Pt. I, Sec. B) chap. 4-7
LA-1004 (Pt. II, Sec. A) chap. 8-12
LA-1005 (Pt. II, Sec. B) chap. 13-16
LA-1030 (Pt. III, Sec. A) chap. 17-18
LA-1031 (Pt. III, Sec. B) chap. 19-20
LA-1032 (Pt. III, Sec. C) chap. 21-23

Vol. II
LA-1057 (Pt. I) chap. 1-5
LA-1058 (Pt. II) chap. 6-8

Vol. III
LA-1009 (Sec. A) chap. 1-3
LA-1010 (Sec. B) chap. 4-6
LA-1011 (Sec. C) chap. 7-9

Vol. IV
* No record of this being issued. This volume was projected to be "Neutron Diffusion Theory". George Placzek was to be the editor. (LAMD-76)

Vol. V
LA-1033 (Pt. I) chap. 1-3
LA-1034 (Pt. II) chap. 4
LA-1035 (Pt. III) chap. 5-7
LA-1036 (Pt. IV) chap. 8-10

Vol. VI
LA-1028 (Pt. I) chap. 1-4
LA-1029 (Pt. II) chap. 5-6

*For the current classification of each publication please consult the Report Library shelf list.

It is interesting to note that in the 1950's Placzek authored a report entitled "Introduction to the Theory of Neutron Diffusion" which was based on his lectures presented at the Rand Corporation in 1949. This report contains no indication of any link to the Los Alamos Technical Series.
For the current classification of each publication please consult the Report Library shelf list.

It is interesting to note that in the 1950's Placzek authored a report entitled "Introduction to the Theory of Neutron Diffusion" which was based on his lectures presented at the Rand Corporation in 1949. This report contains no indication of any link to the Los Alamos Technical Series.

Per information obtained from Leslie M. Redman on 12/30/81, much of the information intended to be included in Vol. VI of the Technical Series was finally incorporated in "Introduction to the Theory of Neutron Diffusion," Vol. I. This Los Alamos publication was authored by K. M. Case, F. deHoffmann, and G. Placzek. It is dated 1953. It has no report number assigned; however, copies are available from the Report Library. There was no volume two or any subsequent volumes.
Vol. VII** Blaas Wave
LA-1020 (Pt. I) chap. 1-4 Unclass
LA-1021 (Pt. II) chap. 5-10 Unclass
LA-1022 (Pt. III) chap. 11-14 Conf.
LA-1023 (Pt. I) chap. 15-19 Secert

Vol. VIII*** Chemistry of Uranium and Plutonium
LA-1016 (Sec. A) chap. 1-4 Secert
LA-1017 (Sec. B) chap. 5-7 Secert
LA-1018 (Sec. C) chap. 8-9 Unclass

Vol. IX This volume cancelled in 1949. The miscellaneous chemistry which was to be covered in this work was dispursed among various other volumes in the series.

Vol. X Miscellaneous
No record of chapter I being issued
LA-1223 (Chap. 2) Conf.
LA-1223 (Chap. 3) Unclass
LA-1253 (Chap. 4) Conf.
LA-1254 (Chap. 5) Unclass
LA-1254 (Chap. 6) Conf.

Vol. XI Explosions and Detonation Waves
LA-1043 (Pt. I) Secert
LA-1044 (Pt. II, Sec. A) Introduction, chap. 1-3 Secert
LA-1045 (Pt. II, Sec. B) chap. 4-9 Secert
LA-1046 (Pt. II, Sec. C) chap. 5-11 Secert
LA-1047 (Pt. II, Sec. D) chap. 9-11 Secert
LA-1048 (Pt. III) chap. 1-2 Secert
LA-1049 (Pt. III, Sec. B) chap. 3-4 Secert
LA-1050 (Pt. III, Sec. C) chap. 5-6 Secert
LA-1051 (Pt. III) chap. 7-8 Secert
LA-1052 (Pt. IV, Sec. A) chap. 1-3 Secert
LA-1053 (Pt. IV, Sec. B) chap. 4-5 Secert
LA-1054 (Pt. IV, Sec. C) chap. 6-8 Secert
LA-1055 (Pt. IV, Sec. D) chap. 9-11 Secert

** LA-2040 which is unclassified supercedes LA-1020 and part of LA-1021.

*** This volume has been revised and the various parts of volume VIIl have been incorporated into LA-1100. LA-1100 contains chapters 1-9.
Vol. VII** B(ladurene)
LA-1020 (Pt. I) chap. 1-4 Unclass
LA-1021 (Pt. II) chap. 5-10 Unclass
LA-1022 (Pt. III) chap. 11-14 Conf.
LA-1023 (Pt. IV) chap. 15-19 Secret

Vol. VIII*** Chemistry of Uranium and Plutonium
LA-1016 (Sec. A) chap. 1-4 Secret
LA-1017 (Sec. B) chap. 5-7 Secret
LA-1018 (Sec. C) chap. 8-9 Unclass.

Vol. IX
This volume cancelled in 1949. The miscellaneous chemistry which was to be covered in this work was dispersed among various other volumes in the series.

Vol. X
Metallurgy (LAMC-)
No record of chapter I being issued
Plutonium Metallurgy
LA-1223 (Chap. 2) Conf C.S. Smith: Uranium Metallurgy 3/31/51
LA-1236 (Chap. 3) unknown BeO C.S. Smith
LA-1245 (Chap. 4) Conf. WC
LA-1259 (Chap. 5) unclass Refractories:
Red Liner Ingot
Mold Parts
 Mold Caustic

Vol. XI Explosions and Detonation Waves
LA-1043 (Pt. I) Secret
LA-1044 (Pt. II, Sec. A) Introduction, chap. 1-3 Secret
LA-1045 (Pt. II, Sec. B) chap. 4-8 Secret
LA-1046 (Pt. II, Sec. C) chap. 9-11 Secret
LA-1047 (Pt. III) chap. 1-2 Secret
LA-1049 (Pt. III, Sec. B) chap. 3-4 Secret
LA-1050 (Pt. III, Sec. C) chap. 5-6 Secret
LA-1051 (Pt. III) chap. 7-8 Secret
LA-1052 (Pt. IV, Sec. A) chap. 1-3 Secret
LA-1053 (Pt. IV, Sec. B) chap. 4-5 Secret
LA-1054 (Pt. IV, Sec. C) chap. 6-8 Secret
LA-1055 (Pt. IV, Sec. D) chap. 9-11 Secret

**LA-20400 which is unclassified supercedes LA-1020 and part of LA-1021.

***This volume has been revised and the various parts of volume VII have been incorporated into LA-1100. LA-1100 contains chapters 1-9.
The proposed content of the chapters not issued are listed below.

<table>
<thead>
<tr>
<th>Chap.</th>
<th>Author/Editor</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro</td>
<td>Bacher</td>
<td>Introduction</td>
</tr>
<tr>
<td>1</td>
<td>Parratt, Tuck</td>
<td>Flash X-Ray and Early Implosion Tests</td>
</tr>
<tr>
<td>2</td>
<td>Koski</td>
<td>Photographic Observations</td>
</tr>
<tr>
<td>3</td>
<td>Linschitz</td>
<td>Terminal Observations</td>
</tr>
<tr>
<td>4</td>
<td>Froman, Graves</td>
<td>Electric Observations</td>
</tr>
<tr>
<td>5</td>
<td>Fowler, Joseph</td>
<td>Magnetic Observations</td>
</tr>
<tr>
<td>6</td>
<td>Rossi</td>
<td>Radio Observations</td>
</tr>
<tr>
<td>7</td>
<td>Neddermeyer, et al</td>
<td>Betatron Observations</td>
</tr>
<tr>
<td>8</td>
<td>Holloway</td>
<td>Over-all Design</td>
</tr>
<tr>
<td>9</td>
<td>Friedlander</td>
<td>Radio-Barium, Radio-Lanthanum (LAM 770)</td>
</tr>
</tbody>
</table>
Vol. XXII Fuze
LA-1009 chap. 1-8 and appendix C
Vol. XXIII Nuclear Weapons Engineering and Delivery
LA-1161 chap. 1-6
Vol. XXIV
LA-1012 chap 1-11
LA-1013 (Sec. A) appendices 1-19
LA-1014 (Sec. B) appendix 20
LA-1015 (Sec. C) appendices 21-30
LA-1019 (Sec. D) appendices 31-40
LA-1024 (Sec. E) appendices 41-48
LA-1025 (Sec. F) appendix 49
LA-1026 (Sec. G) appendices 50-54
LA-1027 (Sec. H) appendices 55-71

Volumes XIII - XX were reserved for future volumes in the series. There is no indication that topics or authors were assigned to these. (LAMD-76)
Miscellaneous documents related to the Los Alamos Technical Series

This contains a useful brief description of the purpose of the series and a listing of proposed volumes, subjects, and authors.

Despite the later publication date, the information contained here is virtually identical with LAMD-76.

✓LAMD-770 "Outline of the Los Alamos Technical Series (1945)" cover memo dated, July 3, 1952

This is a complete accounting of all volumes in the series except IX. Attached to the report are two different summaries of the series. These are invaluable.
SECTION 6
A Partial Listing of the
National Nuclear
Energy Series Volumes

1) NNES-III-3
Atomic Energy Commission
Chemical separation of the
uranium isotopes.
C. A. Hutchison, Jr. 1952 197 pp

Secret
NNES-III-3
Atomic Energy
Commission
National Nuclear
Energy Series
Hutchison, Clyde
A. Jr.
Murphy, Geo. M
(Editor)

2) NNES IV-6A
AEC, National Nuclear Energy
Series
Coatings and corrosion.
Howe et al 1951 314 pp

Secret
NNES IV-6A
AEC, National
Nuclear Energy
Series
Howe, J. P
Jones, T. O
Allen, A. O
Burgnan, E. W
Chapin, J. H
Foote, F. O
Greninger, A. B
Hoxang, R. B
Hittredge, W. R
Ohlinger, L. A

NNES IV-6A

Plott, R. F
Wheermann, R. F
Wohlberg, C
Oursinsky, D. H
(3) NNES-III-4E
AEC, National Nuclear Energy Series
Commercial production of heavy water.
Maloney and Ray n.d. 224 pp

(4) NNES-I-13
National Nuclear Energy Series
Determination of the isotopic composition of uranium.
Cameron, A. E. 1950 216 pp

(5) NNES-X-1
AEC, National Nuclear Energy Series
Developments in the centrifuge separation project.
Beams, et al n.d. 273 pp
NIES-I-10 Technology - Electromagnetic Process

Atomic Energy Commission
Electrical equipment for tanks and magnets. Division I, Volume 10.
Daldock and Hudson 1952 429 pp

NIES-I-10
Atomic Energy Comm.
Cfeel, Nuclear Energy
Series
Daldock, C R
Hudson, E D
Savage, H Wesley
L. Electromagnetic Separation Plant (Y-12)—Electrical Systems

NIES-IV-5 (Abridged)
National Nuclear Energy Series
Graphite uranium production pile.
Borst e. al a. d. 461 pp

NIES-IV-5 (Abridged)
Borst, L B
Abrams, R
Belneke, C B
Cowan, I
Bales, Logan B
Jenks, C
Jones, R
Leverett, W C
Lore, A B
Mathis, W

NIES-IV-5 (Abridged)
Nordheim, L W
Morris, L D
Chlenger, L A
Rand, A C
Raper, J R
Stoughton, R W
Zirkle, R E
NNES-IV-5 (Report: SECRET)

National Nuclear Energy Series
GRAPHITE URANIUM PRODUCTION
PILES. DIVISION IV - PLUTONIUM
PROJECT RECORD, VOLUME 5.

1. Plutonium--
 Production
I. Personal Author
II. Corp. Author

N4

NNES-I-9

Atomic Energy Commission. National
Nuclear Energy Series
High-voltage problems.
Trimmer and Pearlman n. d. 250 pp

Trimmer, J. D
Pearlman, Harry
Title
National Nuclear
Energy Series
AEC, National Nuclear Energy Series
Isotopic analysis.
Murphy et al 1951 416 pp

continued on back

Goldberg, H D
Goldberg, M I
Hancock, J G
Hurd, Frank W
Ingman, M G
Klebanow, R I
Masservey, A P
Nester, C H
Ochumdro, R J
Reed, G Jr.
Rustad, B M
Sheiman, D

AEC, National Nuclear Energy Series
Laboratory studies for separation processes.
Eidinoff, et al 1951 410 pp

Eidinoff, Maxwell L
Joris, George G
Taylor, Ellison, H
Taylor, Hugh S
Urey, Harold C
Murphy, George M
Kirshenbaum, Isidor
List of NATIONAL NUCLEAR ENERGY SERIES.

NNES-IX-1
National Nuclear Energy Series
Liquid thermal diffusion.
Abelson, et al 1951 180 pp
Secret

NNES-I-2
National Nuclear Energy Series
Magnets and magnetic measuring techniques.
Wakerling et al 1951 235 pp
Secret
AEC, National Nuclear Energy Series
Separation of the boron isotopes,
Kilpatrick, et al. 1952 489 pp

AEC, National Nuclear Energy Series
Special separations at the National Bureau of Standards,
G. M. Murphy et al. n.d. 244 pp

Levinsoh, S
Madorsky, I
Madorsky, Samuel L
Parham, O L
Reid, J G, Jr.
Schwartz, M
Smith, E R
Straus, S
Taylor, J K
Taylor, T I
Weathaver, J W
Wise, C E, Jr.
Wald, A M
Higgins, A S
Britten, R J
Title
National Nuclear Energy Series
The theory of isotopes separation as applied to the large-scale production of U-235.
K. Cohen June 1950 313 pp

AEC, National Nuclear Energy Series
Uranium technology: General survey.
Vance and Warner 1951 242 pp

National Nuclear Energy Series
Utilisation of heavy water.
Isidor Kirshenbaum n. d. 212 pp
(20) NNES-I-1 Chapter 6
AEC, National Nuclear Energy Series
Vacuum equipment and techniques.
Chapter 6 - Operations
Techniques.
W. E. Bush, et al April, 1952
33 pp

(21) NNES-I-11
National Nuclear Energy Series
Vacuum problems and techniques.
Normand et al 1950 289pp
SECTION 7
Essential Reference Documents for all Nuclear Energy Collections

U.S. ATOMIC ENERGY COMMISSION: NATIONAL NUCLEAR ENERGY SERIES

DIVISIONES I - X 64 Volumes (1946-56)

microfilm on Open reel $880.00 in Cartridge $628.00 in Jackets $1,872.75

The groundwork for present nuclear sciences was recorded in a series of important reports published secretly by the Manhattan Engineer District and its successor, the Atomic Energy Commission. Approximately 100 volumes, covering the work of the 1940s and 1950s, detailed the research and development of electromagnetic and special separation processes, gaseous and thermal diffusion processes, and the projects known as Los Alamos, Manhattan, Plutonium, Rochester, etc. Written by the top nuclear scientists of the time, they offer us an authoritative record of the research process as one might want for the history of the tenets of our present nuclear science and policy.

DIVISION I - ELECTROMAGNETIC SEPARATION PROCESS

Vol 1. Vacuum Equipment and Techniques
Editors: A. GUTHRIE and R.K. WAKERLING, Radiation Laboratory, University of California
McGraw-Hill 1949 256pp. 105 illus
Open reel $10.00, Cartridge $12.00; Jackets $15.00

Vol 2. Magnetic and Magnetic Measuring Techniques
Editors: R.K. WAKERLING, Radiation Laboratory, University of California, and A. GUTHRIE, U.S. Naval Research Laboratory
Open reel $16.00, Cartridge $23.00; Jackets $28.00

Vol 3. Electrical Circuits for Cobalt
Editors: R.K. WAKERLING, Radiation Laboratory, University of California, and A. GUTHRIE, U.S. Naval Research Laboratory
Open reel $18.00, Cartridge $27.00; Jackets $32.00

Vol 4: Electromagnetic Separation of Isotopes in Commercial Quantities
Editors: R.K. WAKERLING, Radiation Laboratory, University of California, and A. GUTHRIE, U.S. Naval Research Laboratory
Open reel $18.00, Cartridge $27.00; Jackets $32.00

Vol 5. The Characteristics of Electrical Discharges in Plasma Fluids
Editors: A. GUTHRIE and R.K. WAKERLING, Radiation Laboratory, University of California
Open reel $13.00, Cartridge $16.00; Jackets $20.00

Vol 6. Sources and Collection of Use in Cobalt
Editors: R.K. WAKERLING, Radiation Laboratory, University of California, and A. GUTHRIE, U.S. Naval Research Laboratory
Open reel $16.00, Cartridge $22.00; Jackets $28.00

Vol 7. Separation of Isotopes in Cobalt
Editors: A. GUTHRIE and R.K. WAKERLING, Radiation Laboratory, University of California
Open reel $16.00, Cartridge $22.00; Jackets $28.00

Vol 8. Production of Plutonium in the Ion Source
ARTHUR H. BARRENE, Argonne National Laboratory
Open reel $16.00, Cartridge $22.00; Jackets $28.00

Vol 9. High Voltage Problems
J.D. TRIMMER, Physics Department, University of Tennessee, and HARRY PEARLMAN, North American Aviation, Inc.
Editor: H. WESEL SAVAGE, Carbide and Carbon Chemical Company
Open reel $12.00, Cartridge $12.00; Jackets $15.00

Vol 10. Electrolysis Equipment for Tungsten and Magnets
C.R. BALDWIN, and E.G. HUSKIN, Carbide and Carbon Chemical Company
Open reel $16.00, Cartridge $16.00; Jackets $25.00

Vol 11. Vacuum and Pressure Problems
C.E. NORMAND, FRANK A. KNOX, G.W. MONK, ALAN J. SAMUEL, and R.K. PERRET, General Engineer Works, Tennessee Eastman Corporation
Open reel $10.00, Cartridge $12.00; Jackets $15.00

G.A. AKIN, R.P. BROOKS, G.W. SCHMID, and R.M. STROHMEIER
Open reel $17.75, Cartridge $18.75; Jackets $28.00

Vol 13. Determination of the Initial Content of Uranium
A.E. CAMERON, K.C. Arthur, Union Carbide and Carbon Corporation
Open reel $16.00, Cartridge $19.00; Jackets $25.00

Open reel $17.75, Cartridge $18.75; Jackets $25.00

Vol 15. (Also classified): Steen and Wohler Engineering Corporation contribution to the Electromagnetic Separation Project. Part II
Open reel $17.75, Cartridge $18.75; Jackets $25.00

DIVISION II - GAS-LIQUID DIFFUSION PROCESS

Volume 18 (1948)
16mm microfilm on Open reel (11 reel) $10.00
in Cartridge $12.00; in Jackets $18.00

Vol 16. Engineering Developments in the Gas-Liquid Diffusion Process
Editors: W. D. BERNSTEIN, Hydracarbon Research, Inc., and H. M. WILLIAMS, Brookhaven National Laboratory
McGraw-Hill, 1949. 123pp. 44 illus

DIVISION III - SPECIAL SEPARATIONS PROJECT

Volumes 18 - 20 (1949 - 1951)
16mm microfilm on Open reel (12 reel) $20.00
in Cartridge $24.00; in Jackets $32.00

Vol 17. The Theory of Isotope Separation as Applied to the Large Scale Production of U-235
W. D. COHEN, The N.K. Frontier Company
McGraw-Hill, 1951. 160pp. 274 illus
Open reel $18.00, Cartridge $22.00; Jackets $28.00

Vol 18. Special Separations of Uranium Compounds
D.G. DEERE, The Johns Hopkins University, and A.B. DUNCAN, University of Rochester
McGraw-Hill, 1949. 280pp
Open reel $16.75, Cartridge $17.75; Jackets $25.00

Vol 19. Chemical Separations of the Uranium Isotopes
CUTLER A. HUTCHINSON, Jr., Columbia University
U.S. Atomic Energy Commission, 1952. 175pp. 32 illus
Open reel $16.00, Cartridge $18.00; Jackets $25.00

Vol 20. Physical Properties and Analysis of Heavy Metal Compounds
Editors: G.M. KEENAN, C.I. Einhorn, Nuclear Development, Standard Oil Development Company
McGraw-Hill, 1951. 430pp. 190 illus
Open reel $18.00, Cartridge $21.00, Jackets $27.75

Pergamon Press Headington Hill Hall Oxford OX3 9DW England & Fairview Park Elmsford New York 10523 USA
Essential Reference Documents for all Nuclear Energy Collections

U.S. ATOMIC ENERGY COMMISSION:
NATIONAL NUCLEAR ENERGY SERIES

DIVISIONES 1 - X 64 Volumes (1945-56)
16mm microfilm on Open reel $60.00 in Cartridge $62.00 in Jackets $112.75

The groundwork for present nuclear sciences was recorded in a series of important reports published secretly by the Manhattan Engineer District and its successor, the Atomic Energy Commission. Approximately 100 volumes, covering the work of the 1940s and 1950s, detailed the research and development of electromagnetic and special separation processes, gaseous and thermal diffusion processes, and the projects known as Los Alamos, Manhattan, Plutonium, Rochester, etc. Written by the top nuclear scientists of the time, they offer as authoritative a record of the research process as one might want for the history of the tenets of our present nuclear science and policy.

PERGAMON PRESS Headington Hill Hall Oxford OX3 0BP England & Fairview Park Elmsford New York 10523 USA
NOW AVAILABLE ON MICROFILM
Essential Reference Documents for all Nuclear Energy Collections

Vol 4B: Utilization of Heavy Water
Editor HAROLD C. UREY, Institute for Nuclear Studies, University of Chicago, and ISIDOR KIRSHEBAUM, Emo Laboratories, Standard Oil Development Company

Open rent $10.00, Cartridge $12.00, Jackets $15.00

Vol 4C: Bibliography of Research on Heavy Hydrogen Compounds
Consumer ALICE M. KIMBALL, Editors HAROLD C. UREY, Institute for Nuclear Studies, University of Chicago, and ISIDOR KIRSHEBAUM, Emo Laboratories, Standard Oil Development Company

Open rent $11.00, Cartridge $12.00, Jackets $15.00

Vol 4D: Laboratory Studies for Separation Processes
Open rent $10.00, Cartridge $12.00, Jackets $15.00

Vol 4E: Commercial Production of Heavy Water
Open rent $10.00, Cartridge $12.00, Jackets $15.00

Editors: GEORGE M. MURPHY, Washington Square College, New York University, HAROLD C. UREY, Institute for Nuclear Studies, University of Chicago, and ISIDOR KIRSHEBAUM, Emo Laboratories, Standard Oil Development Company

Open rent $14.00, Cartridge $16.00, Jackets $21.00

Vol 4F: Separation of the Barium Isotopes
Open rent $11.00, Cartridge $12.00, Jackets $15.00

Vol 5: Special Emphasis at the National Bureau of Standards
U.S. Atomic Energy Commission, 1951, 240pp
Open rent $13.50, Cartridge $16.00, Jackets $20.50

DIVISION IV - PLUTONIUM PROJECT
Open rent $14.00, 16mm microfilm on Open rent (5 reels) $175.00
in Cartridge $190.00
in Jackets $216.00

Vol. 8: Optical Instrumentation
Editor: GEORGE S. MONK, University of Chicago, and W.H. MCCORKLE, Argonne National Laboratory

U.S. Atomic Energy Commission, 1951, 232pp
Open rent $16.00, Cartridge $18.00, Jackets $20.00

Editors: CHARLES D. CORYELL, Laboratory for Nuclear Science and Engineering, Massachusetts Institute of Technology, and THOMAS R. BUCHANAN, Institute for Nuclear Studies, University of Chicago

U.S. Atomic Energy Commission, 1951, 220pp
Open rent $17.00, Cartridge $19.00, Jackets $22.00

Vol. 10: The Antineutrons
Editors: GLENN T. SEABORG, Radiation Laboratory, University of California, and JOSEPH J. KATZ, Chemistry Division, Argonne National Laboratory

Open rent $20.75, Cartridge $22.75, Jackets $48.00

Vol. 14: (P. 1 & 2): The Transuranium Elements: Research Papers
Editors: GLENN T. SEABORG, University of California, and JOSEPH J. KATZ and WINSTON M. MANNING, Argonne National Laboratory

U.S. Atomic Energy Commission, 1951, 400pp
Open rent $51.00, Cartridge $63.00, Jackets $81.00

Vol. 17A: Production and Separation of 235U, Survey Editors: GLENN T. SEABORG, Radiation Laboratory, University of California, and LEONARD I. KATZIN, Argonne National Laboratory

Open rent $15.00, Cartridge $18.00, Jackets $21.00

Vol. 17B: Production and Separation of 235U, Editors: LEONARD I. KATZIN, Argonne National Laboratory

Open rent $17.85, Cartridge $20.75, Jackets $28.50

Vol. 18B: The Chemistry and Metallurgy of Manganese
Materials: The Handbook
Editor LAURENCE L. QUILL, Department of Chemistry, Michigan State College

Open rent $12.00, Cartridge $14.00, Jackets $18.00

Vol 19C: The Chemistry and Metallurgy of Manganese
Materials: The Handbook
Editor LAURENCE L. QUILL, Department of Chemistry, Michigan State College

Open rent $10.00, Cartridge $12.00, Jackets $15.00

Vol. 20: Industrial Modifications on the Plutonium Project: Survey and Data
Editor ROBERT S. STONE, School of Medicine, University of California

Open rent $18.00, Cartridge $23.00, Jackets $27.00

Vol. 21: Biological Effects of External Beta Radiation
Editor: RAYMOND E. BEALS, Institute of Radiobiology and Biophysics, University of Chicago

Open rent $18.00, Cartridge $23.00, Jackets $27.00

Vol. 22: Biological Effects of External X and Gamma Radiation
Part I and II
Editor: RAYMOND E. BEALS, Institute of Radiobiology and Biophysics, University of Chicago

Open rent $25.00, Cartridge $29.00, Jackets $32.00

Open rent $26.00, Cartridge $27.00, Jackets $32.00

Vol. 23: Teratology of Uranium: Survey and Collected Papers
Editor: ALBERT TANNENBAUM, Medical Research Institute, Michael Reese Hospital

McGraw-Hill, 1951, 133pp 77 illus.
Open rent $29.00, Cartridge $32.00, Jackets $38.00

DIVISION V - LO ALAMOS PROJECT
Volumes 1 - 3 (1949–52)
16mm microfilm on Open rent (1 reel) $26.00
in Cartridge $27.00
in Jackets $48.00

DIVISION VI - THE UNIVERSE OF ROCHESTER PROJECT
Volumes 1 - 3 (1949–52)
16mm microfilm on Open rent (2 reels) $70.00
in Cartridge $76.00
in Jackets $128.00

DIVISION VII - MATERIALS PROCUREMENT PROJECT
Volumes 1 - 3 (1949–56)
16mm microfilm on Open rent (1 reel) $59.00
in Cartridge $57.00
in Jackets $90.00

DIVISION VIII - MANHATTAN PROJECT
Volumes 1 - 3 (1949–56)
16mm microfilm on Open rent (1 reel) $26.00
in Cartridge $27.00
in Jackets $48.00

Vol. 1: Analytical Chemistry of the Manhattan Proje
Open rent $39.00, Cartridge $40.00, Jackets $48.00

Open rent $18.00, Cartridge $20.00, Jackets $24.00

Vol. 6: Medical Effects of the Atomic Bomb in Japan
Editors: ASHLEY W. OUGHTERDSON, School of Medicine, Yale University, and SHELDON WARNER, New England Disciples Hospital

Open rent $37.00, Cartridge $39.00, Jackets $48.00

DIVISION IX - THERMAL DIFFUSION PROJECT
Volume 1 (1951)
16mm microfilm on Open rent (1 reel) $16.00
in Cartridge $16.00
in Jackets $16.00

Vol. 1: Liquid Thermal Diffusion
Editors: PHILIP H. ABELOM, Carnegie Institution of Washington, D.C.; NATHAN ROSEN, University of North Carolina, and JOHN I. HOOVER, Naval Research Laboratory

DIVISION X - CENTRIFUGE PROJECT
Volume 1 (1951)
16mm microfilm on Open rent (1 reel) $16.00
in Cartridge $16.00
in Jackets $16.00

Vol. 1: Development of the Centrifuge Separation Process
J.W. BEAMS, University of Virginia, A.C. HAGG, Westinghouse Electric Corp., and E.V. MURPHY, Standard Oil Development Company

PENGAMON PRESS
Haddington Hill Hall Oxford OX3 0BW England & Fairview Park Elmsford New York 10523 USA
SECTION 8
<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>N11-1A-1</td>
<td>1</td>
</tr>
<tr>
<td>N11-1A-2</td>
<td>2</td>
</tr>
<tr>
<td>N11-1A-3</td>
<td>3</td>
</tr>
<tr>
<td>N11-1A-4</td>
<td>4</td>
</tr>
<tr>
<td>N11-1A-5</td>
<td>5</td>
</tr>
<tr>
<td>N11-1A-6</td>
<td>6</td>
</tr>
<tr>
<td>N11-1A-7</td>
<td>7</td>
</tr>
<tr>
<td>N11-1A-8</td>
<td>8</td>
</tr>
<tr>
<td>N11-1A-9</td>
<td>9</td>
</tr>
<tr>
<td>N11-1A-10</td>
<td>10</td>
</tr>
<tr>
<td>N11-1A-11</td>
<td>11</td>
</tr>
<tr>
<td>N11-1A-12</td>
<td>12</td>
</tr>
<tr>
<td>N11-1A-13</td>
<td>13</td>
</tr>
<tr>
<td>N11-1A-14</td>
<td>14</td>
</tr>
<tr>
<td>N11-1A-15</td>
<td>15</td>
</tr>
<tr>
<td>N11-1A-16</td>
<td>16</td>
</tr>
<tr>
<td>N11-1A-17</td>
<td>17</td>
</tr>
<tr>
<td>N11-1A-18</td>
<td>18</td>
</tr>
<tr>
<td>N11-1A-19</td>
<td>19</td>
</tr>
<tr>
<td>N11-1A-20</td>
<td>20</td>
</tr>
<tr>
<td>N11-1A-21</td>
<td>21</td>
</tr>
<tr>
<td>N11-1A-22</td>
<td>22</td>
</tr>
<tr>
<td>N11-1A-23</td>
<td>23</td>
</tr>
<tr>
<td>N11-1A-24</td>
<td>24</td>
</tr>
<tr>
<td>N11-1A-25</td>
<td>25</td>
</tr>
<tr>
<td>N11-1A-26</td>
<td>26</td>
</tr>
<tr>
<td>N11-1A-27</td>
<td>27</td>
</tr>
<tr>
<td>N11-1A-28</td>
<td>28</td>
</tr>
<tr>
<td>N11-1A-29</td>
<td>29</td>
</tr>
<tr>
<td>N11-1A-30</td>
<td>30</td>
</tr>
<tr>
<td>N11-1A-31</td>
<td>31</td>
</tr>
<tr>
<td>N11-1A-32</td>
<td>32</td>
</tr>
<tr>
<td>N11-1A-33</td>
<td>33</td>
</tr>
<tr>
<td>N11-1A-34</td>
<td>34</td>
</tr>
</tbody>
</table>

The table continues with similar entries for other report numbers.