Computational modeling of neoclassical and resistive MHD tearing modes in tokamaks

PDF Version Also Available for Download.

Description

Numerical studies of the linear and nonlinear evolution of magnetic tearing type modes in three-dimensional toroidal geometry are presented. In addition to traditional resistive MHD effects, where the parameter {Delta}{prime} determines the stability properties, neoclassical effects have been included for the first time in such models. The inclusion of neoclassical physics introduces and additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm`s law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise {Delta}{prime} stable, albeit once an island width threshold is exceeded. The simulations are ... continued below

Physical Description

Medium: P; Size: 116 p.

Creation Information

Gianakon, T.A. February 1, 1996.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

  • Gianakon, T.A. Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Numerical studies of the linear and nonlinear evolution of magnetic tearing type modes in three-dimensional toroidal geometry are presented. In addition to traditional resistive MHD effects, where the parameter {Delta}{prime} determines the stability properties, neoclassical effects have been included for the first time in such models. The inclusion of neoclassical physics introduces and additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm`s law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise {Delta}{prime} stable, albeit once an island width threshold is exceeded. The simulations are based on a set of neoclassical reduced magnetohydrodynamic (MHD) equations in three-dimensional toroidal geometry derived from the two-fluid equations in the limit of small inverse aspect ratio {epsilon} and low plasma pressure {beta} with neoclassical closures for the viscous force {del} {center_dot} {leftrightarrow}{pi}. The poloidal magnetic flux {psi}, the toroidal vorticity {omega}{sup {zeta}}, and the plasma pressure p are time advanced using the parallel projection of Ohm`s law, the toroidal projection of the curl of the momentum equation, and a pressure evolution equation with anisotropic pressure transport parallel to and across magnetic field lines. The equations are implemented in an initial value code which Fourier decomposes equilibrium and perturbation quantities in the poloidal and toroidal directions, and finite differences them radially based on a equilibrium straight magnetic field line representation. An implicit algorithm is used to advance the linear terms; the nonlinear terms are advanced explicitly. The simulations are benchmarked linearly and nonlinearly against single and multiple helicity {Delta}{prime} tearing modes in toroidal geometry in the absence of neo-classical effects.

Physical Description

Medium: P; Size: 116 p.

Notes

INIS; OSTI as DE96009530

Source

  • Other Information: TH: Thesis (Ph.D.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE96009530
  • Report No.: UW-CPTC--96-1
  • Grant Number: FG02-92ER54139
  • Office of Scientific & Technical Information Report Number: 231330
  • Archival Resource Key: ark:/67531/metadc669761

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 30, 2015, 6:39 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gianakon, T.A. Computational modeling of neoclassical and resistive MHD tearing modes in tokamaks, thesis or dissertation, February 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc669761/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.