Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

PDF Version Also Available for Download.

Description

During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high ... continued below

Physical Description

12 p.

Creation Information

Becker, N.M.; Van Eeckhout, E.; David, N.A. & Irvine, J.M. October 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

Physical Description

12 p.

Notes

OSTI as DE96001385

Source

  • HydroGIS `96: application of geographic information systems in hydrology and water resources management, Vienna (Austria), 16-19 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96001385
  • Report No.: LA-UR--95-3388
  • Report No.: CONF-960451--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 202435
  • Archival Resource Key: ark:/67531/metadc669654

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 21, 2016, 9:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Becker, N.M.; Van Eeckhout, E.; David, N.A. & Irvine, J.M. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory, article, October 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc669654/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.