Laboratory Directed Research and Development at Lawrence Livermore National Laboratory (LDRD). Final report, Project No. 95-ERD-039

PDF Version Also Available for Download.

Description

One of the last frontiers in nuclear physics is the discovery of the high baryon density, high temperature transition from normal hadronic matter to the unbound quark-gluon plasma or QGP. We believe that it is possible to create the QGP in the laboratory by colliding large nuclei (typically beams of gold nuclei) at relativistic energies. We proposed to use an innovative device designed and fabricated by LLNL scientists to study collective phenomena as a function of the Au beam energy between 2 and 11 GeV/A. If the QGP is formed at these energies, it is quite possible that a measure ... continued below

Physical Description

4 p.

Creation Information

Sangster, T.C. May 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

One of the last frontiers in nuclear physics is the discovery of the high baryon density, high temperature transition from normal hadronic matter to the unbound quark-gluon plasma or QGP. We believe that it is possible to create the QGP in the laboratory by colliding large nuclei (typically beams of gold nuclei) at relativistic energies. We proposed to use an innovative device designed and fabricated by LLNL scientists to study collective phenomena as a function of the Au beam energy between 2 and 11 GeV/A. If the QGP is formed at these energies, it is quite possible that a measure of collective hydrodynamic flow would be a truly unambiguous signature of QGP formation. The goal of this proposal was to measure the collective flow as a function of the incident projectile (gold beam) energy between 2 and 11 GeV/A and search for anomalies in the flow excitation function which might indicate QGP formation. This was a three-year program tied directly to the anticipated running schedule of the AGS. During the initial state of this project, the LLNL projectile hodoscope was used in AGS experiment E866 to complete the measurement of collective flow in Au+Au collisions at 11 GeV/A. The next stage in the experimental program would have been to make identical flow measurements at beam energies of 2,4,6 and 8 GeV/A. Two separate running periods were scheduled in early FY96 for beams of 2 and 4 GeV/A. These measurements would have completed a full flow excitation function between the current measurement at 11 GeV/A and lower energy data (1 GeV/A) where we know the flow is considerably larger (300 MeV/c at a beam energy of 1 GeV/A). With the termination of this project after the first year, the opportunity to make these measurements has been lost.

Physical Description

4 p.

Notes

OSTI as DE96012325

Source

  • Other Information: PBD: May 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96012325
  • Report No.: UCRL-ID--124113
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/273684 | External Link
  • Office of Scientific & Technical Information Report Number: 273684
  • Archival Resource Key: ark:/67531/metadc669582

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 18, 2016, 6:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sangster, T.C. Laboratory Directed Research and Development at Lawrence Livermore National Laboratory (LDRD). Final report, Project No. 95-ERD-039, report, May 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc669582/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.