Recent development on RF-driven multicusp H{sup {minus}} ion sources

PDF Version Also Available for Download.

Description

The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. The source routinely provided 35 keV, 30 mA of beam at 0.1% duty factor. By using a new cesium dispensing system, beam current in excess of 100 mA and e/H{sup -} {approx}1 have been observed. For pulse mode operation, the rf discharge can be started by means of a xenon flash lamp. Extracted electrons in the beam can be efficiently removed by employing a permanent magnet insert structure. Chopping of the H{sup - } beam can be accomplished by applying a pulsed positive ... continued below

Physical Description

6 p.

Creation Information

Leung, K.N.; De Vries, G.J.; Kunkel, W.B.; Perkins, L.T.; Pickard, D.S.; Saadatmand, K. et al. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. The source routinely provided 35 keV, 30 mA of beam at 0.1% duty factor. By using a new cesium dispensing system, beam current in excess of 100 mA and e/H{sup -} {approx}1 have been observed. For pulse mode operation, the rf discharge can be started by means of a xenon flash lamp. Extracted electrons in the beam can be efficiently removed by employing a permanent magnet insert structure. Chopping of the H{sup - } beam can be accomplished by applying a pulsed positive voltage on the plasma electrode.

Physical Description

6 p.

Notes

INIS; OSTI as DE96013801

Source

  • EPAC `96: 5. European particle accelerator conference, Barcelona (Spain), 10-14 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96013801
  • Report No.: LBL--38268
  • Report No.: CONF-960621--22
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 281686
  • Archival Resource Key: ark:/67531/metadc669494

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 5, 2016, 1:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Leung, K.N.; De Vries, G.J.; Kunkel, W.B.; Perkins, L.T.; Pickard, D.S.; Saadatmand, K. et al. Recent development on RF-driven multicusp H{sup {minus}} ion sources, article, June 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc669494/: accessed October 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.